Properties

Label 2-2151-1.1-c3-0-219
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.45·2-s + 3.95·4-s + 16.3·5-s + 31.8·7-s − 13.9·8-s + 56.4·10-s + 25.7·11-s + 56.5·13-s + 110.·14-s − 79.9·16-s − 20.6·17-s + 155.·19-s + 64.5·20-s + 89.0·22-s − 46.9·23-s + 141.·25-s + 195.·26-s + 125.·28-s − 78.4·29-s − 40.3·31-s − 164.·32-s − 71.4·34-s + 519.·35-s − 178.·37-s + 537.·38-s − 228.·40-s + 259.·41-s + ⋯
L(s)  = 1  + 1.22·2-s + 0.494·4-s + 1.45·5-s + 1.71·7-s − 0.618·8-s + 1.78·10-s + 0.705·11-s + 1.20·13-s + 2.09·14-s − 1.24·16-s − 0.294·17-s + 1.87·19-s + 0.721·20-s + 0.862·22-s − 0.425·23-s + 1.13·25-s + 1.47·26-s + 0.848·28-s − 0.502·29-s − 0.233·31-s − 0.909·32-s − 0.360·34-s + 2.50·35-s − 0.791·37-s + 2.29·38-s − 0.902·40-s + 0.990·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(7.892397386\)
\(L(\frac12)\) \(\approx\) \(7.892397386\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 - 3.45T + 8T^{2} \)
5 \( 1 - 16.3T + 125T^{2} \)
7 \( 1 - 31.8T + 343T^{2} \)
11 \( 1 - 25.7T + 1.33e3T^{2} \)
13 \( 1 - 56.5T + 2.19e3T^{2} \)
17 \( 1 + 20.6T + 4.91e3T^{2} \)
19 \( 1 - 155.T + 6.85e3T^{2} \)
23 \( 1 + 46.9T + 1.21e4T^{2} \)
29 \( 1 + 78.4T + 2.43e4T^{2} \)
31 \( 1 + 40.3T + 2.97e4T^{2} \)
37 \( 1 + 178.T + 5.06e4T^{2} \)
41 \( 1 - 259.T + 6.89e4T^{2} \)
43 \( 1 + 106.T + 7.95e4T^{2} \)
47 \( 1 - 349.T + 1.03e5T^{2} \)
53 \( 1 + 6.97T + 1.48e5T^{2} \)
59 \( 1 + 780.T + 2.05e5T^{2} \)
61 \( 1 + 110.T + 2.26e5T^{2} \)
67 \( 1 + 416.T + 3.00e5T^{2} \)
71 \( 1 + 327.T + 3.57e5T^{2} \)
73 \( 1 + 616.T + 3.89e5T^{2} \)
79 \( 1 + 44.8T + 4.93e5T^{2} \)
83 \( 1 + 262.T + 5.71e5T^{2} \)
89 \( 1 + 1.14e3T + 7.04e5T^{2} \)
97 \( 1 - 1.33e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.970971940660675821328279075007, −7.890479991808192796439798637152, −6.91248924150901155500399497572, −5.79149490376649437154281962847, −5.69413245645033081191959914911, −4.78014004730070271306147094240, −4.02079803326387128466146596848, −2.98329044444497077252981518854, −1.82861692632682523849700827714, −1.23416446959432170420492670462, 1.23416446959432170420492670462, 1.82861692632682523849700827714, 2.98329044444497077252981518854, 4.02079803326387128466146596848, 4.78014004730070271306147094240, 5.69413245645033081191959914911, 5.79149490376649437154281962847, 6.91248924150901155500399497572, 7.890479991808192796439798637152, 8.970971940660675821328279075007

Graph of the $Z$-function along the critical line