Properties

Label 2-2151-1.1-c3-0-90
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.48·2-s − 1.83·4-s + 6.58·5-s + 7.57·7-s − 24.4·8-s + 16.3·10-s − 55.6·11-s + 9.79·13-s + 18.8·14-s − 45.9·16-s − 23.2·17-s + 55.5·19-s − 12.0·20-s − 138.·22-s + 4.24·23-s − 81.5·25-s + 24.3·26-s − 13.8·28-s + 164.·29-s + 26.4·31-s + 81.0·32-s − 57.7·34-s + 49.9·35-s + 138.·37-s + 138.·38-s − 160.·40-s − 377.·41-s + ⋯
L(s)  = 1  + 0.878·2-s − 0.228·4-s + 0.589·5-s + 0.409·7-s − 1.07·8-s + 0.517·10-s − 1.52·11-s + 0.209·13-s + 0.359·14-s − 0.718·16-s − 0.331·17-s + 0.671·19-s − 0.134·20-s − 1.33·22-s + 0.0384·23-s − 0.652·25-s + 0.183·26-s − 0.0936·28-s + 1.05·29-s + 0.153·31-s + 0.447·32-s − 0.291·34-s + 0.241·35-s + 0.614·37-s + 0.589·38-s − 0.635·40-s − 1.43·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.740199751\)
\(L(\frac12)\) \(\approx\) \(2.740199751\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 - 2.48T + 8T^{2} \)
5 \( 1 - 6.58T + 125T^{2} \)
7 \( 1 - 7.57T + 343T^{2} \)
11 \( 1 + 55.6T + 1.33e3T^{2} \)
13 \( 1 - 9.79T + 2.19e3T^{2} \)
17 \( 1 + 23.2T + 4.91e3T^{2} \)
19 \( 1 - 55.5T + 6.85e3T^{2} \)
23 \( 1 - 4.24T + 1.21e4T^{2} \)
29 \( 1 - 164.T + 2.43e4T^{2} \)
31 \( 1 - 26.4T + 2.97e4T^{2} \)
37 \( 1 - 138.T + 5.06e4T^{2} \)
41 \( 1 + 377.T + 6.89e4T^{2} \)
43 \( 1 + 24.8T + 7.95e4T^{2} \)
47 \( 1 - 234.T + 1.03e5T^{2} \)
53 \( 1 - 12.7T + 1.48e5T^{2} \)
59 \( 1 - 627.T + 2.05e5T^{2} \)
61 \( 1 - 708.T + 2.26e5T^{2} \)
67 \( 1 - 741.T + 3.00e5T^{2} \)
71 \( 1 + 13.9T + 3.57e5T^{2} \)
73 \( 1 - 1.00e3T + 3.89e5T^{2} \)
79 \( 1 + 818.T + 4.93e5T^{2} \)
83 \( 1 - 487.T + 5.71e5T^{2} \)
89 \( 1 + 889.T + 7.04e5T^{2} \)
97 \( 1 - 576.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.536920787275722121433939436576, −8.120322055047023888923402846856, −7.00950263228527667171203974648, −6.09775577883294848063526342664, −5.30307416090505404520154979537, −4.94725130497851299547687026872, −3.90632498311335311397235655420, −2.92774555519342824485611475003, −2.12567226519252499552162433703, −0.64010331618561346990256221961, 0.64010331618561346990256221961, 2.12567226519252499552162433703, 2.92774555519342824485611475003, 3.90632498311335311397235655420, 4.94725130497851299547687026872, 5.30307416090505404520154979537, 6.09775577883294848063526342664, 7.00950263228527667171203974648, 8.120322055047023888923402846856, 8.536920787275722121433939436576

Graph of the $Z$-function along the critical line