Properties

Label 2-2151-1.1-c3-0-73
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.43·2-s − 2.06·4-s + 1.94·5-s − 13.0·7-s − 24.5·8-s + 4.75·10-s + 53.8·11-s − 82.5·13-s − 31.7·14-s − 43.2·16-s + 17.4·17-s + 67.9·19-s − 4.01·20-s + 131.·22-s + 16.1·23-s − 121.·25-s − 201.·26-s + 26.8·28-s − 14.4·29-s − 146.·31-s + 90.7·32-s + 42.5·34-s − 25.3·35-s − 137.·37-s + 165.·38-s − 47.7·40-s + 475.·41-s + ⋯
L(s)  = 1  + 0.861·2-s − 0.257·4-s + 0.174·5-s − 0.703·7-s − 1.08·8-s + 0.150·10-s + 1.47·11-s − 1.76·13-s − 0.605·14-s − 0.675·16-s + 0.249·17-s + 0.820·19-s − 0.0449·20-s + 1.27·22-s + 0.146·23-s − 0.969·25-s − 1.51·26-s + 0.181·28-s − 0.0926·29-s − 0.847·31-s + 0.501·32-s + 0.214·34-s − 0.122·35-s − 0.609·37-s + 0.707·38-s − 0.188·40-s + 1.81·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.072620393\)
\(L(\frac12)\) \(\approx\) \(2.072620393\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 - 2.43T + 8T^{2} \)
5 \( 1 - 1.94T + 125T^{2} \)
7 \( 1 + 13.0T + 343T^{2} \)
11 \( 1 - 53.8T + 1.33e3T^{2} \)
13 \( 1 + 82.5T + 2.19e3T^{2} \)
17 \( 1 - 17.4T + 4.91e3T^{2} \)
19 \( 1 - 67.9T + 6.85e3T^{2} \)
23 \( 1 - 16.1T + 1.21e4T^{2} \)
29 \( 1 + 14.4T + 2.43e4T^{2} \)
31 \( 1 + 146.T + 2.97e4T^{2} \)
37 \( 1 + 137.T + 5.06e4T^{2} \)
41 \( 1 - 475.T + 6.89e4T^{2} \)
43 \( 1 + 515.T + 7.95e4T^{2} \)
47 \( 1 - 458.T + 1.03e5T^{2} \)
53 \( 1 + 646.T + 1.48e5T^{2} \)
59 \( 1 - 569.T + 2.05e5T^{2} \)
61 \( 1 + 599.T + 2.26e5T^{2} \)
67 \( 1 - 690.T + 3.00e5T^{2} \)
71 \( 1 - 294.T + 3.57e5T^{2} \)
73 \( 1 - 329.T + 3.89e5T^{2} \)
79 \( 1 - 1.24e3T + 4.93e5T^{2} \)
83 \( 1 + 259.T + 5.71e5T^{2} \)
89 \( 1 - 615.T + 7.04e5T^{2} \)
97 \( 1 - 441.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.003078960924677460630228083997, −7.80766033710373847323747036234, −6.97254729822984275569548064139, −6.25121112794651575101891386527, −5.44330651488862739590801293446, −4.71626284822174028158128988281, −3.80061942337122841539667389880, −3.17606210218701426095817197805, −2.03527008571424009638295864374, −0.55718987508732116646756298493, 0.55718987508732116646756298493, 2.03527008571424009638295864374, 3.17606210218701426095817197805, 3.80061942337122841539667389880, 4.71626284822174028158128988281, 5.44330651488862739590801293446, 6.25121112794651575101891386527, 6.97254729822984275569548064139, 7.80766033710373847323747036234, 9.003078960924677460630228083997

Graph of the $Z$-function along the critical line