Properties

Label 2-2151-1.1-c3-0-31
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.17·2-s − 3.26·4-s − 7.52·5-s − 1.76·7-s − 24.5·8-s − 16.3·10-s − 0.114·11-s − 11.7·13-s − 3.84·14-s − 27.2·16-s − 131.·17-s − 42.0·19-s + 24.5·20-s − 0.249·22-s − 84.1·23-s − 68.3·25-s − 25.5·26-s + 5.76·28-s + 0.308·29-s + 143.·31-s + 136.·32-s − 286.·34-s + 13.3·35-s − 161.·37-s − 91.4·38-s + 184.·40-s + 136.·41-s + ⋯
L(s)  = 1  + 0.769·2-s − 0.407·4-s − 0.673·5-s − 0.0954·7-s − 1.08·8-s − 0.518·10-s − 0.00314·11-s − 0.250·13-s − 0.0734·14-s − 0.425·16-s − 1.87·17-s − 0.507·19-s + 0.274·20-s − 0.00242·22-s − 0.762·23-s − 0.546·25-s − 0.192·26-s + 0.0389·28-s + 0.00197·29-s + 0.831·31-s + 0.755·32-s − 1.44·34-s + 0.0642·35-s − 0.716·37-s − 0.390·38-s + 0.729·40-s + 0.518·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7767054218\)
\(L(\frac12)\) \(\approx\) \(0.7767054218\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 - 2.17T + 8T^{2} \)
5 \( 1 + 7.52T + 125T^{2} \)
7 \( 1 + 1.76T + 343T^{2} \)
11 \( 1 + 0.114T + 1.33e3T^{2} \)
13 \( 1 + 11.7T + 2.19e3T^{2} \)
17 \( 1 + 131.T + 4.91e3T^{2} \)
19 \( 1 + 42.0T + 6.85e3T^{2} \)
23 \( 1 + 84.1T + 1.21e4T^{2} \)
29 \( 1 - 0.308T + 2.43e4T^{2} \)
31 \( 1 - 143.T + 2.97e4T^{2} \)
37 \( 1 + 161.T + 5.06e4T^{2} \)
41 \( 1 - 136.T + 6.89e4T^{2} \)
43 \( 1 + 141.T + 7.95e4T^{2} \)
47 \( 1 + 71.9T + 1.03e5T^{2} \)
53 \( 1 - 412.T + 1.48e5T^{2} \)
59 \( 1 + 135.T + 2.05e5T^{2} \)
61 \( 1 - 621.T + 2.26e5T^{2} \)
67 \( 1 + 616.T + 3.00e5T^{2} \)
71 \( 1 + 493.T + 3.57e5T^{2} \)
73 \( 1 - 321.T + 3.89e5T^{2} \)
79 \( 1 - 400.T + 4.93e5T^{2} \)
83 \( 1 + 387.T + 5.71e5T^{2} \)
89 \( 1 + 702.T + 7.04e5T^{2} \)
97 \( 1 + 994.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.613214238621659489055447137532, −8.109449442014215281670243297065, −6.97565455184505654065420719230, −6.31868678808441704514308506676, −5.42045804871965974440991191923, −4.41009672953278647198227878219, −4.14100814210623313803055924345, −3.07945589299985622544070957898, −2.06037177869924372825511056798, −0.33716582564535775845871757838, 0.33716582564535775845871757838, 2.06037177869924372825511056798, 3.07945589299985622544070957898, 4.14100814210623313803055924345, 4.41009672953278647198227878219, 5.42045804871965974440991191923, 6.31868678808441704514308506676, 6.97565455184505654065420719230, 8.109449442014215281670243297065, 8.613214238621659489055447137532

Graph of the $Z$-function along the critical line