Properties

Label 2-2151-1.1-c3-0-179
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.35·2-s − 2.44·4-s + 8.17·5-s + 34.4·7-s + 24.6·8-s − 19.2·10-s + 20.0·11-s + 4.61·13-s − 81.2·14-s − 38.4·16-s + 39.0·17-s + 72.4·19-s − 19.9·20-s − 47.3·22-s + 183.·23-s − 58.2·25-s − 10.8·26-s − 84.1·28-s + 67.6·29-s + 261.·31-s − 106.·32-s − 92.1·34-s + 281.·35-s + 260.·37-s − 170.·38-s + 201.·40-s − 90.3·41-s + ⋯
L(s)  = 1  − 0.833·2-s − 0.305·4-s + 0.730·5-s + 1.86·7-s + 1.08·8-s − 0.609·10-s + 0.550·11-s + 0.0984·13-s − 1.55·14-s − 0.601·16-s + 0.557·17-s + 0.874·19-s − 0.223·20-s − 0.459·22-s + 1.66·23-s − 0.465·25-s − 0.0820·26-s − 0.568·28-s + 0.432·29-s + 1.51·31-s − 0.586·32-s − 0.464·34-s + 1.35·35-s + 1.15·37-s − 0.729·38-s + 0.795·40-s − 0.344·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.512431189\)
\(L(\frac12)\) \(\approx\) \(2.512431189\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 + 2.35T + 8T^{2} \)
5 \( 1 - 8.17T + 125T^{2} \)
7 \( 1 - 34.4T + 343T^{2} \)
11 \( 1 - 20.0T + 1.33e3T^{2} \)
13 \( 1 - 4.61T + 2.19e3T^{2} \)
17 \( 1 - 39.0T + 4.91e3T^{2} \)
19 \( 1 - 72.4T + 6.85e3T^{2} \)
23 \( 1 - 183.T + 1.21e4T^{2} \)
29 \( 1 - 67.6T + 2.43e4T^{2} \)
31 \( 1 - 261.T + 2.97e4T^{2} \)
37 \( 1 - 260.T + 5.06e4T^{2} \)
41 \( 1 + 90.3T + 6.89e4T^{2} \)
43 \( 1 - 181.T + 7.95e4T^{2} \)
47 \( 1 + 612.T + 1.03e5T^{2} \)
53 \( 1 + 260.T + 1.48e5T^{2} \)
59 \( 1 - 592.T + 2.05e5T^{2} \)
61 \( 1 - 641.T + 2.26e5T^{2} \)
67 \( 1 - 76.0T + 3.00e5T^{2} \)
71 \( 1 - 781.T + 3.57e5T^{2} \)
73 \( 1 + 100.T + 3.89e5T^{2} \)
79 \( 1 - 1.14e3T + 4.93e5T^{2} \)
83 \( 1 + 900.T + 5.71e5T^{2} \)
89 \( 1 + 651.T + 7.04e5T^{2} \)
97 \( 1 - 856.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.601930135769348927591420947243, −8.163968706363070341201765006713, −7.47816765617182152199276639805, −6.52359859844255242334619247445, −5.26837138754897703287643390029, −4.95013755430781708991855416963, −3.96139960394576254590622969054, −2.51625466447687360475659986500, −1.33342471258703073450467620280, −1.03286909423517146993236632552, 1.03286909423517146993236632552, 1.33342471258703073450467620280, 2.51625466447687360475659986500, 3.96139960394576254590622969054, 4.95013755430781708991855416963, 5.26837138754897703287643390029, 6.52359859844255242334619247445, 7.47816765617182152199276639805, 8.163968706363070341201765006713, 8.601930135769348927591420947243

Graph of the $Z$-function along the critical line