Properties

Label 2-2151-1.1-c3-0-23
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.61·2-s − 1.14·4-s − 18.9·5-s + 25.2·7-s + 23.9·8-s + 49.6·10-s − 44.2·11-s − 41.4·13-s − 66.2·14-s − 53.5·16-s − 94.3·17-s + 34.2·19-s + 21.6·20-s + 115.·22-s + 31.8·23-s + 234.·25-s + 108.·26-s − 28.8·28-s + 74.2·29-s − 114.·31-s − 51.2·32-s + 247.·34-s − 479.·35-s + 18.9·37-s − 89.8·38-s − 453.·40-s − 21.2·41-s + ⋯
L(s)  = 1  − 0.925·2-s − 0.142·4-s − 1.69·5-s + 1.36·7-s + 1.05·8-s + 1.57·10-s − 1.21·11-s − 0.884·13-s − 1.26·14-s − 0.837·16-s − 1.34·17-s + 0.414·19-s + 0.241·20-s + 1.12·22-s + 0.288·23-s + 1.87·25-s + 0.819·26-s − 0.194·28-s + 0.475·29-s − 0.664·31-s − 0.282·32-s + 1.24·34-s − 2.31·35-s + 0.0839·37-s − 0.383·38-s − 1.79·40-s − 0.0810·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1911878842\)
\(L(\frac12)\) \(\approx\) \(0.1911878842\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 + 2.61T + 8T^{2} \)
5 \( 1 + 18.9T + 125T^{2} \)
7 \( 1 - 25.2T + 343T^{2} \)
11 \( 1 + 44.2T + 1.33e3T^{2} \)
13 \( 1 + 41.4T + 2.19e3T^{2} \)
17 \( 1 + 94.3T + 4.91e3T^{2} \)
19 \( 1 - 34.2T + 6.85e3T^{2} \)
23 \( 1 - 31.8T + 1.21e4T^{2} \)
29 \( 1 - 74.2T + 2.43e4T^{2} \)
31 \( 1 + 114.T + 2.97e4T^{2} \)
37 \( 1 - 18.9T + 5.06e4T^{2} \)
41 \( 1 + 21.2T + 6.89e4T^{2} \)
43 \( 1 + 424.T + 7.95e4T^{2} \)
47 \( 1 + 106.T + 1.03e5T^{2} \)
53 \( 1 + 97.1T + 1.48e5T^{2} \)
59 \( 1 + 556.T + 2.05e5T^{2} \)
61 \( 1 - 244.T + 2.26e5T^{2} \)
67 \( 1 + 341.T + 3.00e5T^{2} \)
71 \( 1 + 648.T + 3.57e5T^{2} \)
73 \( 1 - 954.T + 3.89e5T^{2} \)
79 \( 1 - 132.T + 4.93e5T^{2} \)
83 \( 1 + 1.36e3T + 5.71e5T^{2} \)
89 \( 1 - 358.T + 7.04e5T^{2} \)
97 \( 1 + 1.16e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.446362640253623006848104989170, −8.074129209645632957292273433250, −7.53044013145571203677986437788, −6.92287108785841686770884955952, −5.07843558039188249288622132428, −4.80370775244310581082721857395, −4.00337140085302271482567398545, −2.71135708404735253358917195969, −1.52316053296817501355106447568, −0.23589485110160262633323022498, 0.23589485110160262633323022498, 1.52316053296817501355106447568, 2.71135708404735253358917195969, 4.00337140085302271482567398545, 4.80370775244310581082721857395, 5.07843558039188249288622132428, 6.92287108785841686770884955952, 7.53044013145571203677986437788, 8.074129209645632957292273433250, 8.446362640253623006848104989170

Graph of the $Z$-function along the critical line