Properties

Label 2-2151-1.1-c3-0-4
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.57·2-s + 23.1·4-s + 14.3·5-s − 15.9·7-s − 84.2·8-s − 80.1·10-s − 67.7·11-s − 60.3·13-s + 89.0·14-s + 285.·16-s − 112.·17-s + 14.3·19-s + 332.·20-s + 377.·22-s − 148.·23-s + 81.4·25-s + 336.·26-s − 369.·28-s − 95.1·29-s − 211.·31-s − 916.·32-s + 624.·34-s − 229.·35-s + 91.5·37-s − 80.2·38-s − 1.21e3·40-s − 330.·41-s + ⋯
L(s)  = 1  − 1.97·2-s + 2.88·4-s + 1.28·5-s − 0.862·7-s − 3.72·8-s − 2.53·10-s − 1.85·11-s − 1.28·13-s + 1.70·14-s + 4.45·16-s − 1.59·17-s + 0.173·19-s + 3.71·20-s + 3.65·22-s − 1.34·23-s + 0.651·25-s + 2.53·26-s − 2.49·28-s − 0.609·29-s − 1.22·31-s − 5.06·32-s + 3.15·34-s − 1.10·35-s + 0.406·37-s − 0.342·38-s − 4.78·40-s − 1.25·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.003480250974\)
\(L(\frac12)\) \(\approx\) \(0.003480250974\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 + 5.57T + 8T^{2} \)
5 \( 1 - 14.3T + 125T^{2} \)
7 \( 1 + 15.9T + 343T^{2} \)
11 \( 1 + 67.7T + 1.33e3T^{2} \)
13 \( 1 + 60.3T + 2.19e3T^{2} \)
17 \( 1 + 112.T + 4.91e3T^{2} \)
19 \( 1 - 14.3T + 6.85e3T^{2} \)
23 \( 1 + 148.T + 1.21e4T^{2} \)
29 \( 1 + 95.1T + 2.43e4T^{2} \)
31 \( 1 + 211.T + 2.97e4T^{2} \)
37 \( 1 - 91.5T + 5.06e4T^{2} \)
41 \( 1 + 330.T + 6.89e4T^{2} \)
43 \( 1 - 116.T + 7.95e4T^{2} \)
47 \( 1 + 391.T + 1.03e5T^{2} \)
53 \( 1 + 65.7T + 1.48e5T^{2} \)
59 \( 1 + 352.T + 2.05e5T^{2} \)
61 \( 1 + 289.T + 2.26e5T^{2} \)
67 \( 1 + 508.T + 3.00e5T^{2} \)
71 \( 1 - 850.T + 3.57e5T^{2} \)
73 \( 1 - 527.T + 3.89e5T^{2} \)
79 \( 1 + 388.T + 4.93e5T^{2} \)
83 \( 1 + 274.T + 5.71e5T^{2} \)
89 \( 1 - 1.18e3T + 7.04e5T^{2} \)
97 \( 1 - 1.62e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.944322378034296914670106617319, −8.010395274096552704671255803635, −7.40405564408688640071715591227, −6.58656473404771531015625583641, −5.96041207765668975857242271318, −5.11531299340591306921817263913, −3.12753470840504086292556823109, −2.24569126615295195335036617102, −1.94893835393557463149289811122, −0.03242826700082158098937539989, 0.03242826700082158098937539989, 1.94893835393557463149289811122, 2.24569126615295195335036617102, 3.12753470840504086292556823109, 5.11531299340591306921817263913, 5.96041207765668975857242271318, 6.58656473404771531015625583641, 7.40405564408688640071715591227, 8.010395274096552704671255803635, 8.944322378034296914670106617319

Graph of the $Z$-function along the critical line