Properties

Label 2-2151-1.1-c3-0-65
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.23·2-s − 3.01·4-s − 1.56·5-s − 14.0·7-s + 24.5·8-s + 3.48·10-s − 21.7·11-s + 37.8·13-s + 31.3·14-s − 30.7·16-s + 37.1·17-s + 63.4·19-s + 4.70·20-s + 48.6·22-s + 98.7·23-s − 122.·25-s − 84.4·26-s + 42.3·28-s + 246.·29-s + 132.·31-s − 128.·32-s − 82.9·34-s + 21.9·35-s − 387.·37-s − 141.·38-s − 38.3·40-s + 256.·41-s + ⋯
L(s)  = 1  − 0.789·2-s − 0.376·4-s − 0.139·5-s − 0.758·7-s + 1.08·8-s + 0.110·10-s − 0.596·11-s + 0.807·13-s + 0.598·14-s − 0.481·16-s + 0.530·17-s + 0.766·19-s + 0.0526·20-s + 0.471·22-s + 0.895·23-s − 0.980·25-s − 0.637·26-s + 0.285·28-s + 1.57·29-s + 0.768·31-s − 0.707·32-s − 0.418·34-s + 0.105·35-s − 1.72·37-s − 0.604·38-s − 0.151·40-s + 0.978·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9060891031\)
\(L(\frac12)\) \(\approx\) \(0.9060891031\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 + 2.23T + 8T^{2} \)
5 \( 1 + 1.56T + 125T^{2} \)
7 \( 1 + 14.0T + 343T^{2} \)
11 \( 1 + 21.7T + 1.33e3T^{2} \)
13 \( 1 - 37.8T + 2.19e3T^{2} \)
17 \( 1 - 37.1T + 4.91e3T^{2} \)
19 \( 1 - 63.4T + 6.85e3T^{2} \)
23 \( 1 - 98.7T + 1.21e4T^{2} \)
29 \( 1 - 246.T + 2.43e4T^{2} \)
31 \( 1 - 132.T + 2.97e4T^{2} \)
37 \( 1 + 387.T + 5.06e4T^{2} \)
41 \( 1 - 256.T + 6.89e4T^{2} \)
43 \( 1 + 419.T + 7.95e4T^{2} \)
47 \( 1 - 100.T + 1.03e5T^{2} \)
53 \( 1 - 37.7T + 1.48e5T^{2} \)
59 \( 1 - 331.T + 2.05e5T^{2} \)
61 \( 1 + 440.T + 2.26e5T^{2} \)
67 \( 1 - 372.T + 3.00e5T^{2} \)
71 \( 1 - 123.T + 3.57e5T^{2} \)
73 \( 1 + 776.T + 3.89e5T^{2} \)
79 \( 1 - 1.19e3T + 4.93e5T^{2} \)
83 \( 1 + 981.T + 5.71e5T^{2} \)
89 \( 1 + 1.26e3T + 7.04e5T^{2} \)
97 \( 1 - 32.5T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.653407972228198708674879487768, −8.172367595193781548788550508249, −7.33615280271261654671209634529, −6.55379186563733444713783343485, −5.53916163975186319116341130532, −4.75567674953292545540441431603, −3.69381660716851568888415184169, −2.90803926171614314682801453609, −1.44825497101831436550863794418, −0.52843585314088392591092940909, 0.52843585314088392591092940909, 1.44825497101831436550863794418, 2.90803926171614314682801453609, 3.69381660716851568888415184169, 4.75567674953292545540441431603, 5.53916163975186319116341130532, 6.55379186563733444713783343485, 7.33615280271261654671209634529, 8.172367595193781548788550508249, 8.653407972228198708674879487768

Graph of the $Z$-function along the critical line