Properties

Label 2-2151-1.1-c3-0-30
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.00·2-s + 1.03·4-s − 10.0·5-s − 17.8·7-s + 20.9·8-s + 30.1·10-s + 34.7·11-s − 0.0479·13-s + 53.6·14-s − 71.2·16-s − 40.3·17-s − 119.·19-s − 10.3·20-s − 104.·22-s + 117.·23-s − 24.0·25-s + 0.144·26-s − 18.4·28-s − 46.1·29-s − 42.7·31-s + 46.4·32-s + 121.·34-s + 179.·35-s + 231.·37-s + 358.·38-s − 210.·40-s − 164.·41-s + ⋯
L(s)  = 1  − 1.06·2-s + 0.129·4-s − 0.898·5-s − 0.964·7-s + 0.925·8-s + 0.954·10-s + 0.951·11-s − 0.00102·13-s + 1.02·14-s − 1.11·16-s − 0.575·17-s − 1.43·19-s − 0.116·20-s − 1.01·22-s + 1.06·23-s − 0.192·25-s + 0.00108·26-s − 0.124·28-s − 0.295·29-s − 0.247·31-s + 0.256·32-s + 0.611·34-s + 0.866·35-s + 1.03·37-s + 1.52·38-s − 0.831·40-s − 0.626·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3187518446\)
\(L(\frac12)\) \(\approx\) \(0.3187518446\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 + 3.00T + 8T^{2} \)
5 \( 1 + 10.0T + 125T^{2} \)
7 \( 1 + 17.8T + 343T^{2} \)
11 \( 1 - 34.7T + 1.33e3T^{2} \)
13 \( 1 + 0.0479T + 2.19e3T^{2} \)
17 \( 1 + 40.3T + 4.91e3T^{2} \)
19 \( 1 + 119.T + 6.85e3T^{2} \)
23 \( 1 - 117.T + 1.21e4T^{2} \)
29 \( 1 + 46.1T + 2.43e4T^{2} \)
31 \( 1 + 42.7T + 2.97e4T^{2} \)
37 \( 1 - 231.T + 5.06e4T^{2} \)
41 \( 1 + 164.T + 6.89e4T^{2} \)
43 \( 1 + 237.T + 7.95e4T^{2} \)
47 \( 1 - 595.T + 1.03e5T^{2} \)
53 \( 1 - 500.T + 1.48e5T^{2} \)
59 \( 1 + 428.T + 2.05e5T^{2} \)
61 \( 1 - 904.T + 2.26e5T^{2} \)
67 \( 1 + 390.T + 3.00e5T^{2} \)
71 \( 1 + 712.T + 3.57e5T^{2} \)
73 \( 1 + 992.T + 3.89e5T^{2} \)
79 \( 1 + 1.10e3T + 4.93e5T^{2} \)
83 \( 1 + 228.T + 5.71e5T^{2} \)
89 \( 1 + 1.56e3T + 7.04e5T^{2} \)
97 \( 1 + 773.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.760121354476479727159505373972, −8.217332675735978691651996876555, −7.11814034640339742058994101153, −6.83916973238085053917070586119, −5.73405217742528771836350853609, −4.31328437161399766095909210697, −4.01840667694745728889233184202, −2.75734414478968670108844847662, −1.46223692061642945224419549848, −0.31675860909299966425169552455, 0.31675860909299966425169552455, 1.46223692061642945224419549848, 2.75734414478968670108844847662, 4.01840667694745728889233184202, 4.31328437161399766095909210697, 5.73405217742528771836350853609, 6.83916973238085053917070586119, 7.11814034640339742058994101153, 8.217332675735978691651996876555, 8.760121354476479727159505373972

Graph of the $Z$-function along the critical line