Properties

Label 2-2151-1.1-c3-0-197
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.18·2-s + 18.8·4-s − 5.12·5-s + 5.19·7-s + 56.2·8-s − 26.5·10-s + 55.2·11-s + 76.1·13-s + 26.9·14-s + 140.·16-s + 20.2·17-s − 39.8·19-s − 96.5·20-s + 286.·22-s − 73.2·23-s − 98.7·25-s + 394.·26-s + 97.9·28-s + 183.·29-s − 177.·31-s + 278.·32-s + 104.·34-s − 26.6·35-s + 199.·37-s − 206.·38-s − 288.·40-s + 359.·41-s + ⋯
L(s)  = 1  + 1.83·2-s + 2.35·4-s − 0.458·5-s + 0.280·7-s + 2.48·8-s − 0.839·10-s + 1.51·11-s + 1.62·13-s + 0.514·14-s + 2.19·16-s + 0.288·17-s − 0.481·19-s − 1.07·20-s + 2.77·22-s − 0.663·23-s − 0.790·25-s + 2.97·26-s + 0.661·28-s + 1.17·29-s − 1.03·31-s + 1.54·32-s + 0.528·34-s − 0.128·35-s + 0.888·37-s − 0.881·38-s − 1.13·40-s + 1.37·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(9.057736051\)
\(L(\frac12)\) \(\approx\) \(9.057736051\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 - 5.18T + 8T^{2} \)
5 \( 1 + 5.12T + 125T^{2} \)
7 \( 1 - 5.19T + 343T^{2} \)
11 \( 1 - 55.2T + 1.33e3T^{2} \)
13 \( 1 - 76.1T + 2.19e3T^{2} \)
17 \( 1 - 20.2T + 4.91e3T^{2} \)
19 \( 1 + 39.8T + 6.85e3T^{2} \)
23 \( 1 + 73.2T + 1.21e4T^{2} \)
29 \( 1 - 183.T + 2.43e4T^{2} \)
31 \( 1 + 177.T + 2.97e4T^{2} \)
37 \( 1 - 199.T + 5.06e4T^{2} \)
41 \( 1 - 359.T + 6.89e4T^{2} \)
43 \( 1 + 394.T + 7.95e4T^{2} \)
47 \( 1 - 288.T + 1.03e5T^{2} \)
53 \( 1 + 42.6T + 1.48e5T^{2} \)
59 \( 1 + 623.T + 2.05e5T^{2} \)
61 \( 1 - 943.T + 2.26e5T^{2} \)
67 \( 1 - 141.T + 3.00e5T^{2} \)
71 \( 1 - 1.06e3T + 3.57e5T^{2} \)
73 \( 1 + 162.T + 3.89e5T^{2} \)
79 \( 1 - 524.T + 4.93e5T^{2} \)
83 \( 1 + 937.T + 5.71e5T^{2} \)
89 \( 1 - 801.T + 7.04e5T^{2} \)
97 \( 1 + 133.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.501342192404878137339408110664, −7.76732099669563480449495095063, −6.68711937876496815939526689403, −6.26927107148577007582771883951, −5.55052387575413445335638911560, −4.42563027369943145813381268021, −3.91845939128271239179560239028, −3.37335366069317403441920853593, −2.07231209120825873706252347204, −1.13333970288119656882268983367, 1.13333970288119656882268983367, 2.07231209120825873706252347204, 3.37335366069317403441920853593, 3.91845939128271239179560239028, 4.42563027369943145813381268021, 5.55052387575413445335638911560, 6.26927107148577007582771883951, 6.68711937876496815939526689403, 7.76732099669563480449495095063, 8.501342192404878137339408110664

Graph of the $Z$-function along the critical line