Properties

Label 2-2151-1.1-c3-0-139
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.94·2-s + 7.57·4-s − 3.12·5-s + 13.3·7-s − 1.68·8-s − 12.3·10-s + 20.7·11-s + 18.2·13-s + 52.4·14-s − 67.2·16-s + 44.9·17-s + 18.3·19-s − 23.6·20-s + 81.9·22-s + 97.9·23-s − 115.·25-s + 71.8·26-s + 100.·28-s + 165.·29-s − 30.7·31-s − 251.·32-s + 177.·34-s − 41.5·35-s − 207.·37-s + 72.4·38-s + 5.25·40-s + 206.·41-s + ⋯
L(s)  = 1  + 1.39·2-s + 0.946·4-s − 0.279·5-s + 0.718·7-s − 0.0742·8-s − 0.389·10-s + 0.568·11-s + 0.388·13-s + 1.00·14-s − 1.05·16-s + 0.641·17-s + 0.221·19-s − 0.264·20-s + 0.793·22-s + 0.888·23-s − 0.921·25-s + 0.541·26-s + 0.679·28-s + 1.05·29-s − 0.178·31-s − 1.39·32-s + 0.894·34-s − 0.200·35-s − 0.919·37-s + 0.309·38-s + 0.0207·40-s + 0.788·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.350785729\)
\(L(\frac12)\) \(\approx\) \(5.350785729\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 - 3.94T + 8T^{2} \)
5 \( 1 + 3.12T + 125T^{2} \)
7 \( 1 - 13.3T + 343T^{2} \)
11 \( 1 - 20.7T + 1.33e3T^{2} \)
13 \( 1 - 18.2T + 2.19e3T^{2} \)
17 \( 1 - 44.9T + 4.91e3T^{2} \)
19 \( 1 - 18.3T + 6.85e3T^{2} \)
23 \( 1 - 97.9T + 1.21e4T^{2} \)
29 \( 1 - 165.T + 2.43e4T^{2} \)
31 \( 1 + 30.7T + 2.97e4T^{2} \)
37 \( 1 + 207.T + 5.06e4T^{2} \)
41 \( 1 - 206.T + 6.89e4T^{2} \)
43 \( 1 - 308.T + 7.95e4T^{2} \)
47 \( 1 + 372.T + 1.03e5T^{2} \)
53 \( 1 - 323.T + 1.48e5T^{2} \)
59 \( 1 - 652.T + 2.05e5T^{2} \)
61 \( 1 + 355.T + 2.26e5T^{2} \)
67 \( 1 - 702.T + 3.00e5T^{2} \)
71 \( 1 + 137.T + 3.57e5T^{2} \)
73 \( 1 - 233.T + 3.89e5T^{2} \)
79 \( 1 - 420.T + 4.93e5T^{2} \)
83 \( 1 - 1.36e3T + 5.71e5T^{2} \)
89 \( 1 + 1.46e3T + 7.04e5T^{2} \)
97 \( 1 - 1.76e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.653827341722677145409175570166, −7.83007464114579911396310301680, −6.94857407526092000275390721520, −6.16686021532273515149941424895, −5.36086698802916573955838018139, −4.70760280476374819221969184338, −3.88001977752895762934550292713, −3.22296582148206057730140342867, −2.08650434566604334577615553349, −0.872191629011791196579293251197, 0.872191629011791196579293251197, 2.08650434566604334577615553349, 3.22296582148206057730140342867, 3.88001977752895762934550292713, 4.70760280476374819221969184338, 5.36086698802916573955838018139, 6.16686021532273515149941424895, 6.94857407526092000275390721520, 7.83007464114579911396310301680, 8.653827341722677145409175570166

Graph of the $Z$-function along the critical line