Properties

Label 2-2151-1.1-c3-0-154
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.71·2-s + 5.79·4-s + 14.6·5-s − 2.58·7-s − 8.17·8-s + 54.3·10-s + 4.27·11-s − 0.233·13-s − 9.58·14-s − 76.7·16-s + 23.9·17-s + 124.·19-s + 84.7·20-s + 15.8·22-s + 160.·23-s + 88.6·25-s − 0.867·26-s − 14.9·28-s − 262.·29-s + 36.9·31-s − 219.·32-s + 89.0·34-s − 37.7·35-s + 449.·37-s + 461.·38-s − 119.·40-s − 109.·41-s + ⋯
L(s)  = 1  + 1.31·2-s + 0.724·4-s + 1.30·5-s − 0.139·7-s − 0.361·8-s + 1.71·10-s + 0.117·11-s − 0.00498·13-s − 0.183·14-s − 1.19·16-s + 0.341·17-s + 1.50·19-s + 0.947·20-s + 0.153·22-s + 1.45·23-s + 0.709·25-s − 0.00654·26-s − 0.101·28-s − 1.68·29-s + 0.213·31-s − 1.21·32-s + 0.449·34-s − 0.182·35-s + 1.99·37-s + 1.97·38-s − 0.472·40-s − 0.417·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.087593124\)
\(L(\frac12)\) \(\approx\) \(6.087593124\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 - 3.71T + 8T^{2} \)
5 \( 1 - 14.6T + 125T^{2} \)
7 \( 1 + 2.58T + 343T^{2} \)
11 \( 1 - 4.27T + 1.33e3T^{2} \)
13 \( 1 + 0.233T + 2.19e3T^{2} \)
17 \( 1 - 23.9T + 4.91e3T^{2} \)
19 \( 1 - 124.T + 6.85e3T^{2} \)
23 \( 1 - 160.T + 1.21e4T^{2} \)
29 \( 1 + 262.T + 2.43e4T^{2} \)
31 \( 1 - 36.9T + 2.97e4T^{2} \)
37 \( 1 - 449.T + 5.06e4T^{2} \)
41 \( 1 + 109.T + 6.89e4T^{2} \)
43 \( 1 + 275.T + 7.95e4T^{2} \)
47 \( 1 - 463.T + 1.03e5T^{2} \)
53 \( 1 - 62.1T + 1.48e5T^{2} \)
59 \( 1 - 54.4T + 2.05e5T^{2} \)
61 \( 1 - 564.T + 2.26e5T^{2} \)
67 \( 1 - 812.T + 3.00e5T^{2} \)
71 \( 1 - 52.2T + 3.57e5T^{2} \)
73 \( 1 + 375.T + 3.89e5T^{2} \)
79 \( 1 - 19.8T + 4.93e5T^{2} \)
83 \( 1 - 1.32e3T + 5.71e5T^{2} \)
89 \( 1 - 378.T + 7.04e5T^{2} \)
97 \( 1 + 190.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.033839827146930888999661257062, −7.72198372711074057174703033872, −6.83691227561396765065913859694, −6.09053978102975403477783142900, −5.40720021642954845582843556329, −4.98172300449649488326684231437, −3.78858652440293569979128520051, −3.01943113953390443732912060032, −2.15196901998633991524905324290, −0.944057121949584398485599323743, 0.944057121949584398485599323743, 2.15196901998633991524905324290, 3.01943113953390443732912060032, 3.78858652440293569979128520051, 4.98172300449649488326684231437, 5.40720021642954845582843556329, 6.09053978102975403477783142900, 6.83691227561396765065913859694, 7.72198372711074057174703033872, 9.033839827146930888999661257062

Graph of the $Z$-function along the critical line