Properties

Label 2-2151-1.1-c3-0-70
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.404·2-s − 7.83·4-s + 0.184·5-s + 12.9·7-s + 6.40·8-s − 0.0746·10-s + 9.52·11-s − 51.2·13-s − 5.21·14-s + 60.0·16-s − 40.8·17-s + 21.4·19-s − 1.44·20-s − 3.85·22-s − 16.4·23-s − 124.·25-s + 20.7·26-s − 101.·28-s + 181.·29-s + 56.6·31-s − 75.5·32-s + 16.5·34-s + 2.37·35-s − 3.43·37-s − 8.68·38-s + 1.18·40-s + 367.·41-s + ⋯
L(s)  = 1  − 0.143·2-s − 0.979·4-s + 0.0164·5-s + 0.696·7-s + 0.283·8-s − 0.00235·10-s + 0.261·11-s − 1.09·13-s − 0.0996·14-s + 0.939·16-s − 0.582·17-s + 0.259·19-s − 0.0161·20-s − 0.0373·22-s − 0.149·23-s − 0.999·25-s + 0.156·26-s − 0.682·28-s + 1.16·29-s + 0.328·31-s − 0.417·32-s + 0.0833·34-s + 0.0114·35-s − 0.0152·37-s − 0.0370·38-s + 0.00467·40-s + 1.39·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.299932219\)
\(L(\frac12)\) \(\approx\) \(1.299932219\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 + 0.404T + 8T^{2} \)
5 \( 1 - 0.184T + 125T^{2} \)
7 \( 1 - 12.9T + 343T^{2} \)
11 \( 1 - 9.52T + 1.33e3T^{2} \)
13 \( 1 + 51.2T + 2.19e3T^{2} \)
17 \( 1 + 40.8T + 4.91e3T^{2} \)
19 \( 1 - 21.4T + 6.85e3T^{2} \)
23 \( 1 + 16.4T + 1.21e4T^{2} \)
29 \( 1 - 181.T + 2.43e4T^{2} \)
31 \( 1 - 56.6T + 2.97e4T^{2} \)
37 \( 1 + 3.43T + 5.06e4T^{2} \)
41 \( 1 - 367.T + 6.89e4T^{2} \)
43 \( 1 - 3.14T + 7.95e4T^{2} \)
47 \( 1 + 423.T + 1.03e5T^{2} \)
53 \( 1 - 648.T + 1.48e5T^{2} \)
59 \( 1 + 328.T + 2.05e5T^{2} \)
61 \( 1 + 285.T + 2.26e5T^{2} \)
67 \( 1 - 206.T + 3.00e5T^{2} \)
71 \( 1 - 117.T + 3.57e5T^{2} \)
73 \( 1 + 623.T + 3.89e5T^{2} \)
79 \( 1 + 1.13e3T + 4.93e5T^{2} \)
83 \( 1 - 737.T + 5.71e5T^{2} \)
89 \( 1 - 1.34e3T + 7.04e5T^{2} \)
97 \( 1 + 244.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.720299374630055240294255344555, −8.013183570576077095094152389121, −7.40836904276685611063399039808, −6.34166722683409658646847778061, −5.36885875135838708184467293800, −4.65311461952116147643745293333, −4.07691316360470016208884922696, −2.83100205075908555246171067576, −1.69333111358836905627382435050, −0.54221634305489775568465419821, 0.54221634305489775568465419821, 1.69333111358836905627382435050, 2.83100205075908555246171067576, 4.07691316360470016208884922696, 4.65311461952116147643745293333, 5.36885875135838708184467293800, 6.34166722683409658646847778061, 7.40836904276685611063399039808, 8.013183570576077095094152389121, 8.720299374630055240294255344555

Graph of the $Z$-function along the critical line