Properties

Label 2-2151-1.1-c3-0-198
Degree $2$
Conductor $2151$
Sign $-1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.915·2-s − 7.16·4-s − 7.54·5-s + 24.7·7-s + 13.8·8-s + 6.91·10-s + 49.4·11-s − 26.5·13-s − 22.6·14-s + 44.5·16-s − 21.6·17-s − 36.0·19-s + 54.0·20-s − 45.3·22-s − 137.·23-s − 68.0·25-s + 24.3·26-s − 176.·28-s + 0.350·29-s + 302.·31-s − 151.·32-s + 19.8·34-s − 186.·35-s − 340.·37-s + 33.0·38-s − 104.·40-s + 31.5·41-s + ⋯
L(s)  = 1  − 0.323·2-s − 0.895·4-s − 0.674·5-s + 1.33·7-s + 0.613·8-s + 0.218·10-s + 1.35·11-s − 0.567·13-s − 0.431·14-s + 0.696·16-s − 0.309·17-s − 0.435·19-s + 0.604·20-s − 0.439·22-s − 1.24·23-s − 0.544·25-s + 0.183·26-s − 1.19·28-s + 0.00224·29-s + 1.75·31-s − 0.839·32-s + 0.100·34-s − 0.900·35-s − 1.51·37-s + 0.141·38-s − 0.414·40-s + 0.120·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $-1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 + 239T \)
good2 \( 1 + 0.915T + 8T^{2} \)
5 \( 1 + 7.54T + 125T^{2} \)
7 \( 1 - 24.7T + 343T^{2} \)
11 \( 1 - 49.4T + 1.33e3T^{2} \)
13 \( 1 + 26.5T + 2.19e3T^{2} \)
17 \( 1 + 21.6T + 4.91e3T^{2} \)
19 \( 1 + 36.0T + 6.85e3T^{2} \)
23 \( 1 + 137.T + 1.21e4T^{2} \)
29 \( 1 - 0.350T + 2.43e4T^{2} \)
31 \( 1 - 302.T + 2.97e4T^{2} \)
37 \( 1 + 340.T + 5.06e4T^{2} \)
41 \( 1 - 31.5T + 6.89e4T^{2} \)
43 \( 1 + 291.T + 7.95e4T^{2} \)
47 \( 1 - 576.T + 1.03e5T^{2} \)
53 \( 1 + 108.T + 1.48e5T^{2} \)
59 \( 1 + 138.T + 2.05e5T^{2} \)
61 \( 1 - 622.T + 2.26e5T^{2} \)
67 \( 1 - 348.T + 3.00e5T^{2} \)
71 \( 1 - 322.T + 3.57e5T^{2} \)
73 \( 1 + 1.21e3T + 3.89e5T^{2} \)
79 \( 1 + 1.11e3T + 4.93e5T^{2} \)
83 \( 1 - 379.T + 5.71e5T^{2} \)
89 \( 1 - 1.27e3T + 7.04e5T^{2} \)
97 \( 1 + 814.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.421023541104290721698627581795, −7.79987798647617357414938635137, −6.99292466833078435686585208837, −5.91564995095799304029439636403, −4.85675482228922959785570000011, −4.31176034080274466247913988251, −3.68951265817057472579510931918, −2.06727712503165491958893086469, −1.13456400161571298976070040442, 0, 1.13456400161571298976070040442, 2.06727712503165491958893086469, 3.68951265817057472579510931918, 4.31176034080274466247913988251, 4.85675482228922959785570000011, 5.91564995095799304029439636403, 6.99292466833078435686585208837, 7.79987798647617357414938635137, 8.421023541104290721698627581795

Graph of the $Z$-function along the critical line