Properties

Label 2-2151-1.1-c3-0-213
Degree $2$
Conductor $2151$
Sign $-1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.51·2-s − 5.69·4-s + 1.30·5-s − 3.41·7-s − 20.7·8-s + 1.98·10-s − 12.1·11-s + 42.4·13-s − 5.19·14-s + 13.9·16-s + 58.4·17-s − 36.2·19-s − 7.45·20-s − 18.5·22-s − 142.·23-s − 123.·25-s + 64.4·26-s + 19.4·28-s + 94.7·29-s + 304.·31-s + 187.·32-s + 88.8·34-s − 4.47·35-s + 29.1·37-s − 55.1·38-s − 27.2·40-s + 319.·41-s + ⋯
L(s)  = 1  + 0.536·2-s − 0.711·4-s + 0.117·5-s − 0.184·7-s − 0.919·8-s + 0.0628·10-s − 0.334·11-s + 0.905·13-s − 0.0991·14-s + 0.218·16-s + 0.834·17-s − 0.438·19-s − 0.0833·20-s − 0.179·22-s − 1.29·23-s − 0.986·25-s + 0.486·26-s + 0.131·28-s + 0.606·29-s + 1.76·31-s + 1.03·32-s + 0.448·34-s − 0.0216·35-s + 0.129·37-s − 0.235·38-s − 0.107·40-s + 1.21·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $-1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 + 239T \)
good2 \( 1 - 1.51T + 8T^{2} \)
5 \( 1 - 1.30T + 125T^{2} \)
7 \( 1 + 3.41T + 343T^{2} \)
11 \( 1 + 12.1T + 1.33e3T^{2} \)
13 \( 1 - 42.4T + 2.19e3T^{2} \)
17 \( 1 - 58.4T + 4.91e3T^{2} \)
19 \( 1 + 36.2T + 6.85e3T^{2} \)
23 \( 1 + 142.T + 1.21e4T^{2} \)
29 \( 1 - 94.7T + 2.43e4T^{2} \)
31 \( 1 - 304.T + 2.97e4T^{2} \)
37 \( 1 - 29.1T + 5.06e4T^{2} \)
41 \( 1 - 319.T + 6.89e4T^{2} \)
43 \( 1 - 106.T + 7.95e4T^{2} \)
47 \( 1 + 71.3T + 1.03e5T^{2} \)
53 \( 1 + 184.T + 1.48e5T^{2} \)
59 \( 1 + 620.T + 2.05e5T^{2} \)
61 \( 1 + 641.T + 2.26e5T^{2} \)
67 \( 1 - 157.T + 3.00e5T^{2} \)
71 \( 1 - 868.T + 3.57e5T^{2} \)
73 \( 1 - 325.T + 3.89e5T^{2} \)
79 \( 1 - 376.T + 4.93e5T^{2} \)
83 \( 1 - 411.T + 5.71e5T^{2} \)
89 \( 1 + 409.T + 7.04e5T^{2} \)
97 \( 1 + 376.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.122049920590670281537345433114, −7.919748291173465957314584768462, −6.28114772755107955022929962343, −6.09794678580434710302586963632, −5.06059318146366490769175748376, −4.24418603304559061636325673144, −3.53041424958576516529882974238, −2.56850831403179906568267816991, −1.17502836890382335894897209809, 0, 1.17502836890382335894897209809, 2.56850831403179906568267816991, 3.53041424958576516529882974238, 4.24418603304559061636325673144, 5.06059318146366490769175748376, 6.09794678580434710302586963632, 6.28114772755107955022929962343, 7.919748291173465957314584768462, 8.122049920590670281537345433114

Graph of the $Z$-function along the critical line