Properties

Label 8-2150e4-1.1-c1e4-0-6
Degree $8$
Conductor $2.137\times 10^{13}$
Sign $1$
Analytic cond. $86868.4$
Root an. cond. $4.14340$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 8·9-s + 8·11-s + 3·16-s + 4·19-s + 12·29-s + 4·31-s − 16·36-s + 4·41-s − 16·44-s + 26·49-s + 16·59-s − 28·61-s − 4·64-s + 8·71-s − 8·76-s + 28·79-s + 30·81-s + 8·89-s + 64·99-s + 32·109-s − 24·116-s − 8·124-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 4-s + 8/3·9-s + 2.41·11-s + 3/4·16-s + 0.917·19-s + 2.22·29-s + 0.718·31-s − 8/3·36-s + 0.624·41-s − 2.41·44-s + 26/7·49-s + 2.08·59-s − 3.58·61-s − 1/2·64-s + 0.949·71-s − 0.917·76-s + 3.15·79-s + 10/3·81-s + 0.847·89-s + 6.43·99-s + 3.06·109-s − 2.22·116-s − 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{8} \cdot 43^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{8} \cdot 43^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{8} \cdot 43^{4}\)
Sign: $1$
Analytic conductor: \(86868.4\)
Root analytic conductor: \(4.14340\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 5^{8} \cdot 43^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(9.892282593\)
\(L(\frac12)\) \(\approx\) \(9.892282593\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
5 \( 1 \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
good3$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )^{2} \)
11$D_{4}$ \( ( 1 - 4 T + 24 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 34 T^{2} + 595 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 - 32 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
23$D_4\times C_2$ \( 1 + 16 T^{2} + 14 p T^{4} + 16 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 - 6 T + 49 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 2 T + 61 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 104 T^{2} + 5154 T^{4} - 104 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 2 T + 75 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 44 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
59$D_{4}$ \( ( 1 - 8 T + 126 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 + 14 T + 121 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 214 T^{2} + 19779 T^{4} - 214 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - 4 T + 48 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 206 T^{2} + 19467 T^{4} - 206 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 - 14 T + 205 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 260 T^{2} + 30166 T^{4} - 260 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 - 4 T + 132 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 104 T^{2} + 17650 T^{4} + 104 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.62039233305205583814758845546, −6.22978856789006981353203572928, −6.09435630319836451380977712301, −5.95104896992916492072495662003, −5.46550311961132956460317594584, −5.44695590502583191186171774230, −5.17202779541679612564311019916, −4.73983699755431962981262033099, −4.60433949139618820413667525746, −4.47962465994249505892367102207, −4.47713048544575798849074410149, −4.03774999840706421564401706946, −3.95240015049868268979877818359, −3.70883091445091825108715958167, −3.54547702680912995508425612518, −3.24844350354251007022995944677, −2.97111457244028617562885861556, −2.59514604825645346988188738873, −2.18378170154514213989980798405, −2.06806237120489962487702326854, −1.66696069816880308116917563446, −1.16458072465736565648309825773, −1.13736093972284511768033167051, −0.848641541044952427111408936370, −0.68185035125219129401295522645, 0.68185035125219129401295522645, 0.848641541044952427111408936370, 1.13736093972284511768033167051, 1.16458072465736565648309825773, 1.66696069816880308116917563446, 2.06806237120489962487702326854, 2.18378170154514213989980798405, 2.59514604825645346988188738873, 2.97111457244028617562885861556, 3.24844350354251007022995944677, 3.54547702680912995508425612518, 3.70883091445091825108715958167, 3.95240015049868268979877818359, 4.03774999840706421564401706946, 4.47713048544575798849074410149, 4.47962465994249505892367102207, 4.60433949139618820413667525746, 4.73983699755431962981262033099, 5.17202779541679612564311019916, 5.44695590502583191186171774230, 5.46550311961132956460317594584, 5.95104896992916492072495662003, 6.09435630319836451380977712301, 6.22978856789006981353203572928, 6.62039233305205583814758845546

Graph of the $Z$-function along the critical line