Properties

Label 2-2142-1.1-c1-0-38
Degree $2$
Conductor $2142$
Sign $-1$
Analytic cond. $17.1039$
Root an. cond. $4.13569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 7-s + 8-s − 10-s − 5·11-s − 13-s + 14-s + 16-s + 17-s − 6·19-s − 20-s − 5·22-s − 6·23-s − 4·25-s − 26-s + 28-s − 6·29-s + 4·31-s + 32-s + 34-s − 35-s + 11·37-s − 6·38-s − 40-s − 9·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s − 1.50·11-s − 0.277·13-s + 0.267·14-s + 1/4·16-s + 0.242·17-s − 1.37·19-s − 0.223·20-s − 1.06·22-s − 1.25·23-s − 4/5·25-s − 0.196·26-s + 0.188·28-s − 1.11·29-s + 0.718·31-s + 0.176·32-s + 0.171·34-s − 0.169·35-s + 1.80·37-s − 0.973·38-s − 0.158·40-s − 1.37·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2142\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(17.1039\)
Root analytic conductor: \(4.13569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2142,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 7 T + p T^{2} \) 1.53.ah
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 - 15 T + p T^{2} \) 1.79.ap
83 \( 1 + 13 T + p T^{2} \) 1.83.n
89 \( 1 + 13 T + p T^{2} \) 1.89.n
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.214818534375034915463026148944, −8.058182215350688246291268937667, −7.17784034658125445256753156098, −6.14279974211800228995769619333, −5.47583971400052312613240501777, −4.56902455627867224907319278116, −3.92372992981631625850996692437, −2.75538936400630092821215712431, −1.94124859436574581607193810396, 0, 1.94124859436574581607193810396, 2.75538936400630092821215712431, 3.92372992981631625850996692437, 4.56902455627867224907319278116, 5.47583971400052312613240501777, 6.14279974211800228995769619333, 7.17784034658125445256753156098, 8.058182215350688246291268937667, 8.214818534375034915463026148944

Graph of the $Z$-function along the critical line