Properties

Label 2-2112-1.1-c3-0-78
Degree $2$
Conductor $2112$
Sign $-1$
Analytic cond. $124.612$
Root an. cond. $11.1629$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 14.7·5-s − 31.4·7-s + 9·9-s − 11·11-s − 22.7·13-s − 44.1·15-s − 46.1·17-s + 4.11·19-s + 94.2·21-s + 163.·23-s + 91.2·25-s − 27·27-s + 188.·29-s + 210.·31-s + 33·33-s − 461.·35-s + 76.5·37-s + 68.1·39-s + 396.·41-s − 501.·43-s + 132.·45-s − 54.7·47-s + 643.·49-s + 138.·51-s − 338.·53-s − 161.·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.31·5-s − 1.69·7-s + 0.333·9-s − 0.301·11-s − 0.484·13-s − 0.759·15-s − 0.657·17-s + 0.0496·19-s + 0.979·21-s + 1.48·23-s + 0.729·25-s − 0.192·27-s + 1.20·29-s + 1.22·31-s + 0.174·33-s − 2.23·35-s + 0.340·37-s + 0.279·39-s + 1.51·41-s − 1.78·43-s + 0.438·45-s − 0.170·47-s + 1.87·49-s + 0.379·51-s − 0.877·53-s − 0.396·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2112\)    =    \(2^{6} \cdot 3 \cdot 11\)
Sign: $-1$
Analytic conductor: \(124.612\)
Root analytic conductor: \(11.1629\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2112,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
11 \( 1 + 11T \)
good5 \( 1 - 14.7T + 125T^{2} \)
7 \( 1 + 31.4T + 343T^{2} \)
13 \( 1 + 22.7T + 2.19e3T^{2} \)
17 \( 1 + 46.1T + 4.91e3T^{2} \)
19 \( 1 - 4.11T + 6.85e3T^{2} \)
23 \( 1 - 163.T + 1.21e4T^{2} \)
29 \( 1 - 188.T + 2.43e4T^{2} \)
31 \( 1 - 210.T + 2.97e4T^{2} \)
37 \( 1 - 76.5T + 5.06e4T^{2} \)
41 \( 1 - 396.T + 6.89e4T^{2} \)
43 \( 1 + 501.T + 7.95e4T^{2} \)
47 \( 1 + 54.7T + 1.03e5T^{2} \)
53 \( 1 + 338.T + 1.48e5T^{2} \)
59 \( 1 + 565.T + 2.05e5T^{2} \)
61 \( 1 - 820.T + 2.26e5T^{2} \)
67 \( 1 - 134.T + 3.00e5T^{2} \)
71 \( 1 + 299.T + 3.57e5T^{2} \)
73 \( 1 + 875.T + 3.89e5T^{2} \)
79 \( 1 + 175.T + 4.93e5T^{2} \)
83 \( 1 + 1.46e3T + 5.71e5T^{2} \)
89 \( 1 - 377.T + 7.04e5T^{2} \)
97 \( 1 - 841.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.579543922565863800575491334426, −7.25474025076188390527265916867, −6.51720387714690591690413716425, −6.18984533869279141511714632799, −5.27846093357250755201574045954, −4.47796898347901354970849647735, −3.07332731810258926105659995186, −2.51144709292696402862363764563, −1.13718427157199356669876605765, 0, 1.13718427157199356669876605765, 2.51144709292696402862363764563, 3.07332731810258926105659995186, 4.47796898347901354970849647735, 5.27846093357250755201574045954, 6.18984533869279141511714632799, 6.51720387714690591690413716425, 7.25474025076188390527265916867, 8.579543922565863800575491334426

Graph of the $Z$-function along the critical line