Properties

Label 2-2112-8.5-c1-0-0
Degree $2$
Conductor $2112$
Sign $-0.965 - 0.258i$
Analytic cond. $16.8644$
Root an. cond. $4.10662$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s − 2.82i·5-s − 9-s i·11-s + 6.29i·13-s + 2.82·15-s − 6.89·17-s − 4.89i·19-s − 6.29·23-s − 3.00·25-s i·27-s + 0.635i·29-s + 9.12·31-s + 33-s + 6.92i·37-s + ⋯
L(s)  = 1  + 0.577i·3-s − 1.26i·5-s − 0.333·9-s − 0.301i·11-s + 1.74i·13-s + 0.730·15-s − 1.67·17-s − 1.12i·19-s − 1.31·23-s − 0.600·25-s − 0.192i·27-s + 0.118i·29-s + 1.63·31-s + 0.174·33-s + 1.13i·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 - 0.258i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.965 - 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2112\)    =    \(2^{6} \cdot 3 \cdot 11\)
Sign: $-0.965 - 0.258i$
Analytic conductor: \(16.8644\)
Root analytic conductor: \(4.10662\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2112} (1057, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2112,\ (\ :1/2),\ -0.965 - 0.258i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1688209533\)
\(L(\frac12)\) \(\approx\) \(0.1688209533\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
11 \( 1 + iT \)
good5 \( 1 + 2.82iT - 5T^{2} \)
7 \( 1 + 7T^{2} \)
13 \( 1 - 6.29iT - 13T^{2} \)
17 \( 1 + 6.89T + 17T^{2} \)
19 \( 1 + 4.89iT - 19T^{2} \)
23 \( 1 + 6.29T + 23T^{2} \)
29 \( 1 - 0.635iT - 29T^{2} \)
31 \( 1 - 9.12T + 31T^{2} \)
37 \( 1 - 6.92iT - 37T^{2} \)
41 \( 1 + 10.8T + 41T^{2} \)
43 \( 1 + 8.89iT - 43T^{2} \)
47 \( 1 + 0.635T + 47T^{2} \)
53 \( 1 - 9.75iT - 53T^{2} \)
59 \( 1 - 5.79iT - 59T^{2} \)
61 \( 1 + 5.02iT - 61T^{2} \)
67 \( 1 - 13.7iT - 67T^{2} \)
71 \( 1 + 11.9T + 71T^{2} \)
73 \( 1 - 7.79T + 73T^{2} \)
79 \( 1 + 6.92T + 79T^{2} \)
83 \( 1 - 9.79iT - 83T^{2} \)
89 \( 1 + 15.7T + 89T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.326813512187420402836316405846, −8.637221984964151112159349590495, −8.400423883547616911253701232953, −6.92741424539998343742992322293, −6.38579109066556856358493103585, −5.23380504741661233277671563413, −4.44862827878681488627882698899, −4.17985061060592904761965128136, −2.64581290731530946762623453146, −1.53147994610171845358541093915, 0.05573700954874060384421435263, 1.84477891261726450563088471071, 2.75784816381058023171367726900, 3.53343119841209111722155295700, 4.70469277606990334546499683681, 5.88510433995240456063758747858, 6.40352813267813197522079982362, 7.12921632154172679376138044428, 8.033400018496237846793990822170, 8.359355438276217420122654845213

Graph of the $Z$-function along the critical line