Properties

Label 8-2100e4-1.1-c1e4-0-19
Degree $8$
Conductor $1.945\times 10^{13}$
Sign $1$
Analytic cond. $79065.2$
Root an. cond. $4.09494$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·9-s + 13·49-s + 16·79-s + 27·81-s + 68·109-s + 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 46·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯
L(s)  = 1  + 2·9-s + 13/7·49-s + 1.80·79-s + 3·81-s + 6.51·109-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 3.53·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + 0.0660·229-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(79065.2\)
Root analytic conductor: \(4.09494\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(6.228630694\)
\(L(\frac12)\) \(\approx\) \(6.228630694\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 - p T^{2} )^{2} \)
5 \( 1 \)
7$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
good11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2^2$ \( ( 1 + 23 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - p T^{2} )^{4} \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{4} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )^{2}( 1 + 11 T + p T^{2} )^{2} \)
37$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 83 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2$ \( ( 1 - p T^{2} )^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{4} \)
61$C_2$ \( ( 1 - T + p T^{2} )^{2}( 1 + T + p T^{2} )^{2} \)
67$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 - p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
83$C_2$ \( ( 1 - p T^{2} )^{4} \)
89$C_2$ \( ( 1 + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + 167 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.48743010089410608242476746622, −6.03837488155012154171248560544, −5.99305260347888915391722498680, −5.97629726608384868681022560228, −5.91626355514101721239787840292, −5.25711843532051393387026720537, −5.11153502246802051940146339025, −5.01410587650028801280534213848, −4.79990916377504536390143849766, −4.47763042959006819961034600339, −4.20525575450400196849538575753, −4.16644349459473959673749951746, −4.12752722639482743766759219506, −3.41222900930171949937893450307, −3.33190229275347937785287510868, −3.32085605894802316738519550674, −3.14861687764710790771742295915, −2.31236427211878930402396597464, −2.20074443196052952253487661255, −2.18285646763031811314215232010, −1.93743706417033022737543260056, −1.35482904634334075502487177937, −1.14080726101816712930625384144, −0.75950971612582345484740653022, −0.49777517793442728489038188339, 0.49777517793442728489038188339, 0.75950971612582345484740653022, 1.14080726101816712930625384144, 1.35482904634334075502487177937, 1.93743706417033022737543260056, 2.18285646763031811314215232010, 2.20074443196052952253487661255, 2.31236427211878930402396597464, 3.14861687764710790771742295915, 3.32085605894802316738519550674, 3.33190229275347937785287510868, 3.41222900930171949937893450307, 4.12752722639482743766759219506, 4.16644349459473959673749951746, 4.20525575450400196849538575753, 4.47763042959006819961034600339, 4.79990916377504536390143849766, 5.01410587650028801280534213848, 5.11153502246802051940146339025, 5.25711843532051393387026720537, 5.91626355514101721239787840292, 5.97629726608384868681022560228, 5.99305260347888915391722498680, 6.03837488155012154171248560544, 6.48743010089410608242476746622

Graph of the $Z$-function along the critical line