Properties

Label 8-2100e4-1.1-c1e4-0-26
Degree $8$
Conductor $1.945\times 10^{13}$
Sign $1$
Analytic cond. $79065.2$
Root an. cond. $4.09494$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 6·7-s + 2·9-s − 4·13-s + 12·21-s − 4·23-s − 6·27-s + 8·39-s − 32·41-s + 18·49-s − 28·53-s − 12·63-s + 8·69-s − 36·73-s − 24·79-s + 11·81-s + 32·89-s + 24·91-s + 12·97-s + 8·101-s − 52·103-s − 28·107-s − 24·109-s − 60·113-s − 8·117-s + 16·121-s + 64·123-s + ⋯
L(s)  = 1  − 1.15·3-s − 2.26·7-s + 2/3·9-s − 1.10·13-s + 2.61·21-s − 0.834·23-s − 1.15·27-s + 1.28·39-s − 4.99·41-s + 18/7·49-s − 3.84·53-s − 1.51·63-s + 0.963·69-s − 4.21·73-s − 2.70·79-s + 11/9·81-s + 3.39·89-s + 2.51·91-s + 1.21·97-s + 0.796·101-s − 5.12·103-s − 2.70·107-s − 2.29·109-s − 5.64·113-s − 0.739·117-s + 1.45·121-s + 5.77·123-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(79065.2\)
Root analytic conductor: \(4.09494\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
5 \( 1 \)
7$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
good11$C_4\times C_2$ \( 1 - 16 T^{2} + 126 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
13$D_{4}$ \( ( 1 + 2 T + 22 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 16 T^{2} + 286 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2} \)
31$D_4\times C_2$ \( 1 - 112 T^{2} + 5038 T^{4} - 112 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2^2$ \( ( 1 - 54 T^{2} + p^{2} T^{4} )^{2} \)
41$C_4$ \( ( 1 + 16 T + 126 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 112 T^{2} + 6334 T^{4} - 112 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 176 T^{2} + 12142 T^{4} - 176 p^{2} T^{6} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 + 14 T + 150 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 52 T^{2} + 2998 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 160 T^{2} + 13758 T^{4} - 160 p^{2} T^{6} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 32 T^{2} + 9838 T^{4} - 32 p^{2} T^{6} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 + 18 T + 222 T^{2} + 18 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 12 T + 174 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 272 T^{2} + 31774 T^{4} - 272 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 - 16 T + 222 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 - 6 T + 78 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.91254053070562514935503473736, −6.64795859632820579460090235973, −6.42208878114882333965518959716, −6.25655267201982712301319864296, −6.17708619993648500037950859593, −5.78757460471766174981593649916, −5.70165169085963980366183265607, −5.57767936108639944451595296675, −5.10540898097233351690398310490, −4.99952184686913169152352280075, −4.91318966044700894105267236931, −4.67200274374457960873776453965, −4.37580328612576462909410838030, −4.02151417175022910978778983921, −3.73494570595563733403600406831, −3.72509765451001374746363636441, −3.41368988455271101343075851536, −3.18289205287173802321553842123, −2.82006796447401445450936316266, −2.66496122735462218499956333935, −2.57943264780482616975443102511, −2.03020804236914376588541850359, −1.47128435472330521694695715814, −1.45136778441717679696762422304, −1.36432430034131910361612659743, 0, 0, 0, 0, 1.36432430034131910361612659743, 1.45136778441717679696762422304, 1.47128435472330521694695715814, 2.03020804236914376588541850359, 2.57943264780482616975443102511, 2.66496122735462218499956333935, 2.82006796447401445450936316266, 3.18289205287173802321553842123, 3.41368988455271101343075851536, 3.72509765451001374746363636441, 3.73494570595563733403600406831, 4.02151417175022910978778983921, 4.37580328612576462909410838030, 4.67200274374457960873776453965, 4.91318966044700894105267236931, 4.99952184686913169152352280075, 5.10540898097233351690398310490, 5.57767936108639944451595296675, 5.70165169085963980366183265607, 5.78757460471766174981593649916, 6.17708619993648500037950859593, 6.25655267201982712301319864296, 6.42208878114882333965518959716, 6.64795859632820579460090235973, 6.91254053070562514935503473736

Graph of the $Z$-function along the critical line