Properties

Label 8-2100e4-1.1-c1e4-0-5
Degree $8$
Conductor $1.945\times 10^{13}$
Sign $1$
Analytic cond. $79065.2$
Root an. cond. $4.09494$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s − 18·19-s + 36·31-s + 13·49-s − 30·61-s + 34·79-s − 34·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 46·169-s + 54·171-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 9-s − 4.12·19-s + 6.46·31-s + 13/7·49-s − 3.84·61-s + 3.82·79-s − 3.25·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 3.53·169-s + 4.12·171-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(79065.2\)
Root analytic conductor: \(4.09494\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.5016573850\)
\(L(\frac12)\) \(\approx\) \(0.5016573850\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
5 \( 1 \)
7$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
good11$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 23 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 + T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
23$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )^{2}( 1 - 7 T + p T^{2} )^{2} \)
37$C_2^2$$\times$$C_2^2$ \( ( 1 - 73 T^{2} + p^{2} T^{4} )( 1 + 26 T^{2} + p^{2} T^{4} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
67$C_2^2$$\times$$C_2^2$ \( ( 1 - 109 T^{2} + p^{2} T^{4} )( 1 + 122 T^{2} + p^{2} T^{4} ) \)
71$C_2$ \( ( 1 - p T^{2} )^{4} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 97 T^{2} + p^{2} T^{4} )( 1 - 46 T^{2} + p^{2} T^{4} ) \)
79$C_2$ \( ( 1 - 13 T + p T^{2} )^{2}( 1 - 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - p T^{2} )^{4} \)
89$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 169 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.52524163293491696802384785619, −6.41468880150551895409943495839, −6.11410658632003400538905021699, −5.97005681110183550646598519654, −5.64056368436443038121618241452, −5.55528232701351724497699340138, −5.12427363764397657723481588770, −4.93133261247043515302946876259, −4.65658897799173012480975950151, −4.39335674989657498942100533399, −4.36546782644587033812636487668, −4.35957753746558317742316602531, −3.94611131814498482222822657044, −3.71035757062377461355335553867, −3.26338426665225181151839098670, −3.03386024321708511224590664998, −2.82487513137547798235875120675, −2.60528663132931696460484937669, −2.39008828539541413001348419585, −2.20328068816299253490870850841, −1.92031155015977353708394047005, −1.42025949416906607433129148542, −0.975921734353406488605339778144, −0.818643975557155154483942556960, −0.13663626241023770969549641904, 0.13663626241023770969549641904, 0.818643975557155154483942556960, 0.975921734353406488605339778144, 1.42025949416906607433129148542, 1.92031155015977353708394047005, 2.20328068816299253490870850841, 2.39008828539541413001348419585, 2.60528663132931696460484937669, 2.82487513137547798235875120675, 3.03386024321708511224590664998, 3.26338426665225181151839098670, 3.71035757062377461355335553867, 3.94611131814498482222822657044, 4.35957753746558317742316602531, 4.36546782644587033812636487668, 4.39335674989657498942100533399, 4.65658897799173012480975950151, 4.93133261247043515302946876259, 5.12427363764397657723481588770, 5.55528232701351724497699340138, 5.64056368436443038121618241452, 5.97005681110183550646598519654, 6.11410658632003400538905021699, 6.41468880150551895409943495839, 6.52524163293491696802384785619

Graph of the $Z$-function along the critical line