Properties

Label 8-2100e4-1.1-c1e4-0-27
Degree $8$
Conductor $1.945\times 10^{13}$
Sign $1$
Analytic cond. $79065.2$
Root an. cond. $4.09494$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s − 30·19-s − 36·31-s − 11·49-s − 54·61-s − 26·79-s + 38·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 90·171-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 9-s − 6.88·19-s − 6.46·31-s − 1.57·49-s − 6.91·61-s − 2.92·79-s + 3.63·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2/13·169-s + 6.88·171-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(79065.2\)
Root analytic conductor: \(4.09494\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
5 \( 1 \)
7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
good11$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 + 7 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
23$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$C_2$ \( ( 1 + 7 T + p T^{2} )^{2}( 1 + 11 T + p T^{2} )^{2} \)
37$C_2^2$$\times$$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )( 1 + 47 T^{2} + p^{2} T^{4} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 13 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
67$C_2^2$$\times$$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )( 1 + 122 T^{2} + p^{2} T^{4} ) \)
71$C_2$ \( ( 1 - p T^{2} )^{4} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )( 1 + 143 T^{2} + p^{2} T^{4} ) \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 17 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - p T^{2} )^{4} \)
89$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 167 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.89782364296116684096279499824, −6.57482624400638969846711608861, −6.31796557371598822102590440559, −6.26273237652866279963039265271, −6.12290156967850831221561888958, −5.82812588866077191213409346424, −5.70188378150016424943213198110, −5.66082141275021465837737749763, −5.24117825551125620571327968381, −4.81289160264237990449306628112, −4.64840980311645558855233425759, −4.60912633063682917889059950545, −4.38628428927808149757246983306, −4.03594345182000832688689881852, −3.96640579494860099883315677804, −3.58216133667008246088418148140, −3.49672645729638906971223686899, −3.16274678673882976429846031270, −2.90543178247401271345123644415, −2.47025014554442961212975122046, −2.31350823864576901859244375452, −1.93023310280968759009281596652, −1.90042719646578126204323550349, −1.56577531971802930235978067683, −1.49252612702954258622431449416, 0, 0, 0, 0, 1.49252612702954258622431449416, 1.56577531971802930235978067683, 1.90042719646578126204323550349, 1.93023310280968759009281596652, 2.31350823864576901859244375452, 2.47025014554442961212975122046, 2.90543178247401271345123644415, 3.16274678673882976429846031270, 3.49672645729638906971223686899, 3.58216133667008246088418148140, 3.96640579494860099883315677804, 4.03594345182000832688689881852, 4.38628428927808149757246983306, 4.60912633063682917889059950545, 4.64840980311645558855233425759, 4.81289160264237990449306628112, 5.24117825551125620571327968381, 5.66082141275021465837737749763, 5.70188378150016424943213198110, 5.82812588866077191213409346424, 6.12290156967850831221561888958, 6.26273237652866279963039265271, 6.31796557371598822102590440559, 6.57482624400638969846711608861, 6.89782364296116684096279499824

Graph of the $Z$-function along the critical line