Properties

Label 4-2100e2-1.1-c1e2-0-4
Degree $4$
Conductor $4410000$
Sign $1$
Analytic cond. $281.185$
Root an. cond. $4.09494$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 5·7-s + 6·9-s − 15·19-s − 15·21-s − 9·27-s − 3·31-s − 11·37-s − 26·43-s + 18·49-s + 45·57-s − 12·61-s + 30·63-s + 5·67-s + 3·73-s − 17·79-s + 9·81-s + 9·93-s − 27·103-s − 19·109-s + 33·111-s − 11·121-s + 127-s + 78·129-s + 131-s − 75·133-s + 137-s + ⋯
L(s)  = 1  − 1.73·3-s + 1.88·7-s + 2·9-s − 3.44·19-s − 3.27·21-s − 1.73·27-s − 0.538·31-s − 1.80·37-s − 3.96·43-s + 18/7·49-s + 5.96·57-s − 1.53·61-s + 3.77·63-s + 0.610·67-s + 0.351·73-s − 1.91·79-s + 81-s + 0.933·93-s − 2.66·103-s − 1.81·109-s + 3.13·111-s − 121-s + 0.0887·127-s + 6.86·129-s + 0.0873·131-s − 6.50·133-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4410000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4410000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4410000\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(281.185\)
Root analytic conductor: \(4.09494\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4410000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2543230293\)
\(L(\frac12)\) \(\approx\) \(0.2543230293\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T + p T^{2} \)
5 \( 1 \)
7$C_2$ \( 1 - 5 T + p T^{2} \)
good11$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
17$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 7 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
37$C_2$ \( ( 1 + T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 13 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
71$C_2$ \( ( 1 - p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.300839802611893153596089769989, −8.640983849520001903847421880996, −8.527551603910247379044078972942, −8.208258444802336880104733326860, −7.83334304194280174316062291826, −7.09086944020698758580418432798, −6.93385992547203130049730781567, −6.44410892990600734520112704478, −6.30239586398618453138275953825, −5.48076066362850136042797694548, −5.41166158499978157116780263118, −4.88061314870203617498784745779, −4.64186524005951324616790341410, −4.09133068862827969131728565938, −3.93255412466942509634245344692, −2.98991685911478890352629040315, −2.11894608571276078040737436309, −1.63558196631155314032402485237, −1.53126475426790440779250902111, −0.19601286425132859264478389701, 0.19601286425132859264478389701, 1.53126475426790440779250902111, 1.63558196631155314032402485237, 2.11894608571276078040737436309, 2.98991685911478890352629040315, 3.93255412466942509634245344692, 4.09133068862827969131728565938, 4.64186524005951324616790341410, 4.88061314870203617498784745779, 5.41166158499978157116780263118, 5.48076066362850136042797694548, 6.30239586398618453138275953825, 6.44410892990600734520112704478, 6.93385992547203130049730781567, 7.09086944020698758580418432798, 7.83334304194280174316062291826, 8.208258444802336880104733326860, 8.527551603910247379044078972942, 8.640983849520001903847421880996, 9.300839802611893153596089769989

Graph of the $Z$-function along the critical line