Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 5 \cdot 7 $
Sign $-0.399 + 0.916i$
Motivic weight 2
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1 + i)2-s + (−2.74 + 1.21i)3-s + 2i·4-s + (−3.32 + 3.73i)5-s + (−3.95 − 1.52i)6-s + (−6.61 − 2.29i)7-s + (−2 + 2i)8-s + (6.03 − 6.67i)9-s + (−7.05 + 0.417i)10-s − 10.5i·11-s + (−2.43 − 5.48i)12-s + (14.9 − 14.9i)13-s + (−4.31 − 8.90i)14-s + (4.55 − 14.2i)15-s − 4·16-s + (−15.4 + 15.4i)17-s + ⋯
L(s)  = 1  + (0.5 + 0.5i)2-s + (−0.913 + 0.405i)3-s + 0.5i·4-s + (−0.664 + 0.747i)5-s + (−0.659 − 0.254i)6-s + (−0.944 − 0.327i)7-s + (−0.250 + 0.250i)8-s + (0.670 − 0.741i)9-s + (−0.705 + 0.0417i)10-s − 0.961i·11-s + (−0.202 − 0.456i)12-s + (1.15 − 1.15i)13-s + (−0.308 − 0.636i)14-s + (0.303 − 0.952i)15-s − 0.250·16-s + (−0.911 + 0.911i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.399 + 0.916i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.399 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(210\)    =    \(2 \cdot 3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $-0.399 + 0.916i$
motivic weight  =  \(2\)
character  :  $\chi_{210} (83, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 210,\ (\ :1),\ -0.399 + 0.916i)\)
\(L(\frac{3}{2})\)  \(\approx\)  \(0.00209134 - 0.00319202i\)
\(L(\frac12)\)  \(\approx\)  \(0.00209134 - 0.00319202i\)
\(L(2)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-1 - i)T \)
3 \( 1 + (2.74 - 1.21i)T \)
5 \( 1 + (3.32 - 3.73i)T \)
7 \( 1 + (6.61 + 2.29i)T \)
good11 \( 1 + 10.5iT - 121T^{2} \)
13 \( 1 + (-14.9 + 14.9i)T - 169iT^{2} \)
17 \( 1 + (15.4 - 15.4i)T - 289iT^{2} \)
19 \( 1 + 17.3T + 361T^{2} \)
23 \( 1 + (23.1 - 23.1i)T - 529iT^{2} \)
29 \( 1 + 23.7T + 841T^{2} \)
31 \( 1 + 33.1iT - 961T^{2} \)
37 \( 1 + (17.6 - 17.6i)T - 1.36e3iT^{2} \)
41 \( 1 - 11.8T + 1.68e3T^{2} \)
43 \( 1 + (22.8 + 22.8i)T + 1.84e3iT^{2} \)
47 \( 1 + (12.6 - 12.6i)T - 2.20e3iT^{2} \)
53 \( 1 + (15.3 - 15.3i)T - 2.80e3iT^{2} \)
59 \( 1 - 31.0iT - 3.48e3T^{2} \)
61 \( 1 - 48.6iT - 3.72e3T^{2} \)
67 \( 1 + (77.5 - 77.5i)T - 4.48e3iT^{2} \)
71 \( 1 + 60.7iT - 5.04e3T^{2} \)
73 \( 1 + (-3.52 + 3.52i)T - 5.32e3iT^{2} \)
79 \( 1 + 99.4iT - 6.24e3T^{2} \)
83 \( 1 + (16.9 + 16.9i)T + 6.88e3iT^{2} \)
89 \( 1 + 17.6iT - 7.92e3T^{2} \)
97 \( 1 + (34.7 + 34.7i)T + 9.40e3iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−12.96045437497089105683182041756, −11.74248398763484621355459156970, −10.90152341007884545695862293468, −10.26937359275893131396606368396, −8.705162275065337444991556250954, −7.53031402539977719587685604308, −6.21988158015379442020648249709, −5.96778499246671826629331500657, −4.06124124764045668082540632331, −3.42594967993047774969101462213, 0.00196158479429059965389806376, 1.91287279980020510431881795961, 4.00244690846778345296332605105, 4.85787818316516296374409701729, 6.25122040807103094964304353071, 6.98912266119565882417191255011, 8.622520815391639221385267281573, 9.632333559190517639998023560017, 10.86795886983471276332250162863, 11.67441522198417461002194724994

Graph of the $Z$-function along the critical line