Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 5 \cdot 7 $
Sign $0.664 - 0.746i$
Motivic weight 2
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1 + i)2-s + (2.99 + 0.00829i)3-s + 2i·4-s + (3.67 + 3.39i)5-s + (2.99 + 3.00i)6-s + (1.45 − 6.84i)7-s + (−2 + 2i)8-s + (8.99 + 0.0497i)9-s + (0.274 + 7.06i)10-s − 6.08i·11-s + (−0.0165 + 5.99i)12-s + (−4.00 + 4.00i)13-s + (8.30 − 5.38i)14-s + (10.9 + 10.2i)15-s − 4·16-s + (−14.8 + 14.8i)17-s + ⋯
L(s)  = 1  + (0.5 + 0.5i)2-s + (0.999 + 0.00276i)3-s + 0.5i·4-s + (0.734 + 0.679i)5-s + (0.498 + 0.501i)6-s + (0.208 − 0.978i)7-s + (−0.250 + 0.250i)8-s + (0.999 + 0.00553i)9-s + (0.0274 + 0.706i)10-s − 0.553i·11-s + (−0.00138 + 0.499i)12-s + (−0.307 + 0.307i)13-s + (0.593 − 0.384i)14-s + (0.732 + 0.681i)15-s − 0.250·16-s + (−0.871 + 0.871i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.664 - 0.746i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.664 - 0.746i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(210\)    =    \(2 \cdot 3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $0.664 - 0.746i$
motivic weight  =  \(2\)
character  :  $\chi_{210} (83, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 210,\ (\ :1),\ 0.664 - 0.746i)\)
\(L(\frac{3}{2})\)  \(\approx\)  \(2.69117 + 1.20733i\)
\(L(\frac12)\)  \(\approx\)  \(2.69117 + 1.20733i\)
\(L(2)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-1 - i)T \)
3 \( 1 + (-2.99 - 0.00829i)T \)
5 \( 1 + (-3.67 - 3.39i)T \)
7 \( 1 + (-1.45 + 6.84i)T \)
good11 \( 1 + 6.08iT - 121T^{2} \)
13 \( 1 + (4.00 - 4.00i)T - 169iT^{2} \)
17 \( 1 + (14.8 - 14.8i)T - 289iT^{2} \)
19 \( 1 + 20.4T + 361T^{2} \)
23 \( 1 + (-20.6 + 20.6i)T - 529iT^{2} \)
29 \( 1 + 19.5T + 841T^{2} \)
31 \( 1 + 4.36iT - 961T^{2} \)
37 \( 1 + (1.64 - 1.64i)T - 1.36e3iT^{2} \)
41 \( 1 - 42.2T + 1.68e3T^{2} \)
43 \( 1 + (45.0 + 45.0i)T + 1.84e3iT^{2} \)
47 \( 1 + (36.6 - 36.6i)T - 2.20e3iT^{2} \)
53 \( 1 + (0.652 - 0.652i)T - 2.80e3iT^{2} \)
59 \( 1 + 4.02iT - 3.48e3T^{2} \)
61 \( 1 + 65.2iT - 3.72e3T^{2} \)
67 \( 1 + (-59.7 + 59.7i)T - 4.48e3iT^{2} \)
71 \( 1 - 122. iT - 5.04e3T^{2} \)
73 \( 1 + (-13.1 + 13.1i)T - 5.32e3iT^{2} \)
79 \( 1 + 126. iT - 6.24e3T^{2} \)
83 \( 1 + (12.2 + 12.2i)T + 6.88e3iT^{2} \)
89 \( 1 + 97.2iT - 7.92e3T^{2} \)
97 \( 1 + (60.6 + 60.6i)T + 9.40e3iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−12.91082938458906691745516692657, −11.08540246964525386994530231413, −10.37054096949178125977737737824, −9.149389558979524999007240732617, −8.182604502551058252313029009080, −7.04867499646185474080333961914, −6.34756544847061004545970383685, −4.62214858691248972344255465699, −3.52438610952699043504550701175, −2.12218359129496710877431917135, 1.80378762822059224639245823142, 2.75433779612358040009771409395, 4.46006993022978169116161320791, 5.38453198904832953515160029268, 6.82734857764996439901769421746, 8.310726843554991132541037107824, 9.230941792201107188648813783889, 9.767946972261535516722370859506, 11.12948026202707840636824108861, 12.34993003911771412520530332433

Graph of the $Z$-function along the critical line