Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 5 \cdot 7 $
Sign $0.186 + 0.982i$
Motivic weight 2
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 − i)2-s + (2.35 − 1.86i)3-s + 2i·4-s + (1.91 + 4.61i)5-s + (−4.21 − 0.488i)6-s + (−3.12 − 6.26i)7-s + (2 − 2i)8-s + (2.05 − 8.76i)9-s + (2.70 − 6.53i)10-s − 0.117i·11-s + (3.72 + 4.70i)12-s + (9.72 − 9.72i)13-s + (−3.13 + 9.39i)14-s + (13.1 + 7.29i)15-s − 4·16-s + (13.8 − 13.8i)17-s + ⋯
L(s)  = 1  + (−0.5 − 0.5i)2-s + (0.783 − 0.620i)3-s + 0.5i·4-s + (0.383 + 0.923i)5-s + (−0.702 − 0.0814i)6-s + (−0.446 − 0.894i)7-s + (0.250 − 0.250i)8-s + (0.228 − 0.973i)9-s + (0.270 − 0.653i)10-s − 0.0106i·11-s + (0.310 + 0.391i)12-s + (0.747 − 0.747i)13-s + (−0.223 + 0.670i)14-s + (0.873 + 0.486i)15-s − 0.250·16-s + (0.815 − 0.815i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.186 + 0.982i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.186 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(210\)    =    \(2 \cdot 3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $0.186 + 0.982i$
motivic weight  =  \(2\)
character  :  $\chi_{210} (83, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 210,\ (\ :1),\ 0.186 + 0.982i)\)
\(L(\frac{3}{2})\)  \(\approx\)  \(1.23904 - 1.02606i\)
\(L(\frac12)\)  \(\approx\)  \(1.23904 - 1.02606i\)
\(L(2)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (1 + i)T \)
3 \( 1 + (-2.35 + 1.86i)T \)
5 \( 1 + (-1.91 - 4.61i)T \)
7 \( 1 + (3.12 + 6.26i)T \)
good11 \( 1 + 0.117iT - 121T^{2} \)
13 \( 1 + (-9.72 + 9.72i)T - 169iT^{2} \)
17 \( 1 + (-13.8 + 13.8i)T - 289iT^{2} \)
19 \( 1 - 29.7T + 361T^{2} \)
23 \( 1 + (-2.25 + 2.25i)T - 529iT^{2} \)
29 \( 1 + 46.0T + 841T^{2} \)
31 \( 1 - 1.50iT - 961T^{2} \)
37 \( 1 + (-5.32 + 5.32i)T - 1.36e3iT^{2} \)
41 \( 1 + 13.4T + 1.68e3T^{2} \)
43 \( 1 + (-36.8 - 36.8i)T + 1.84e3iT^{2} \)
47 \( 1 + (-29.7 + 29.7i)T - 2.20e3iT^{2} \)
53 \( 1 + (59.8 - 59.8i)T - 2.80e3iT^{2} \)
59 \( 1 - 84.9iT - 3.48e3T^{2} \)
61 \( 1 - 34.8iT - 3.72e3T^{2} \)
67 \( 1 + (34.4 - 34.4i)T - 4.48e3iT^{2} \)
71 \( 1 + 77.6iT - 5.04e3T^{2} \)
73 \( 1 + (41.3 - 41.3i)T - 5.32e3iT^{2} \)
79 \( 1 - 0.865iT - 6.24e3T^{2} \)
83 \( 1 + (-99.0 - 99.0i)T + 6.88e3iT^{2} \)
89 \( 1 + 129. iT - 7.92e3T^{2} \)
97 \( 1 + (-15.7 - 15.7i)T + 9.40e3iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−11.85537107928844081808844984527, −10.82062695397879574137149515893, −9.891664610095406689221537362781, −9.187428556191843528935348283349, −7.61947566636851848009086262813, −7.32609787958404135246461918158, −5.93494526984045376897396126350, −3.60487648565742820710578724379, −2.88393134778970168514238240305, −1.11813285935869989889750914239, 1.76550517870994253948392492430, 3.58698650889071838002349332579, 5.13027878962067942133164882002, 5.99679904786865379993315799019, 7.64195689179102583753374854506, 8.605474194143060992827874805427, 9.326349916374885014363601517257, 9.838330730224314545405331604287, 11.23673030535087905607930151122, 12.48355453005002078933358436385

Graph of the $Z$-function along the critical line