Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 5 \cdot 7 $
Sign $-0.554 - 0.832i$
Motivic weight 2
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 − i)2-s + (2.28 + 1.94i)3-s + 2i·4-s + (−4.58 + 1.99i)5-s + (−0.347 − 4.22i)6-s + (−4.23 − 5.57i)7-s + (2 − 2i)8-s + (1.46 + 8.87i)9-s + (6.58 + 2.58i)10-s + 14.6i·11-s + (−3.88 + 4.57i)12-s + (3.48 − 3.48i)13-s + (−1.34 + 9.80i)14-s + (−14.3 − 4.32i)15-s − 4·16-s + (−20.1 + 20.1i)17-s + ⋯
L(s)  = 1  + (−0.5 − 0.5i)2-s + (0.762 + 0.646i)3-s + 0.5i·4-s + (−0.916 + 0.399i)5-s + (−0.0579 − 0.704i)6-s + (−0.604 − 0.796i)7-s + (0.250 − 0.250i)8-s + (0.163 + 0.986i)9-s + (0.658 + 0.258i)10-s + 1.32i·11-s + (−0.323 + 0.381i)12-s + (0.267 − 0.267i)13-s + (−0.0961 + 0.700i)14-s + (−0.957 − 0.288i)15-s − 0.250·16-s + (−1.18 + 1.18i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.554 - 0.832i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.554 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(210\)    =    \(2 \cdot 3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $-0.554 - 0.832i$
motivic weight  =  \(2\)
character  :  $\chi_{210} (83, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 210,\ (\ :1),\ -0.554 - 0.832i)\)
\(L(\frac{3}{2})\)  \(\approx\)  \(0.326879 + 0.610808i\)
\(L(\frac12)\)  \(\approx\)  \(0.326879 + 0.610808i\)
\(L(2)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (1 + i)T \)
3 \( 1 + (-2.28 - 1.94i)T \)
5 \( 1 + (4.58 - 1.99i)T \)
7 \( 1 + (4.23 + 5.57i)T \)
good11 \( 1 - 14.6iT - 121T^{2} \)
13 \( 1 + (-3.48 + 3.48i)T - 169iT^{2} \)
17 \( 1 + (20.1 - 20.1i)T - 289iT^{2} \)
19 \( 1 + 26.4T + 361T^{2} \)
23 \( 1 + (2.68 - 2.68i)T - 529iT^{2} \)
29 \( 1 + 28.5T + 841T^{2} \)
31 \( 1 - 15.6iT - 961T^{2} \)
37 \( 1 + (-7.69 + 7.69i)T - 1.36e3iT^{2} \)
41 \( 1 - 37.9T + 1.68e3T^{2} \)
43 \( 1 + (-41.7 - 41.7i)T + 1.84e3iT^{2} \)
47 \( 1 + (-21.0 + 21.0i)T - 2.20e3iT^{2} \)
53 \( 1 + (-47.4 + 47.4i)T - 2.80e3iT^{2} \)
59 \( 1 + 61.6iT - 3.48e3T^{2} \)
61 \( 1 - 54.1iT - 3.72e3T^{2} \)
67 \( 1 + (-68.9 + 68.9i)T - 4.48e3iT^{2} \)
71 \( 1 - 65.9iT - 5.04e3T^{2} \)
73 \( 1 + (6.51 - 6.51i)T - 5.32e3iT^{2} \)
79 \( 1 - 42.7iT - 6.24e3T^{2} \)
83 \( 1 + (-9.52 - 9.52i)T + 6.88e3iT^{2} \)
89 \( 1 - 19.3iT - 7.92e3T^{2} \)
97 \( 1 + (-84.6 - 84.6i)T + 9.40e3iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−12.61912718292521070153839027445, −11.01811772466724527231658151773, −10.59098021791425267258025289774, −9.641976610441226723746449548765, −8.588294476508762551697621085073, −7.67544234122623473158602367735, −6.72201278260505445064249645869, −4.31331270894829973311269144497, −3.81496973913636765205719745991, −2.28111055916756002234828753964, 0.39906715831325259268044644989, 2.54382855655878888112813768773, 4.04908232174414850097049131800, 5.86601350691854229551093024258, 6.84581462339016341184345122002, 7.920962967579112840004254398429, 8.951467953260646703575318575119, 9.060953171014891366929132706671, 10.93882180316268815369663022855, 11.83295382104877179406169212416

Graph of the $Z$-function along the critical line