Properties

Label 2-210-105.89-c1-0-9
Degree $2$
Conductor $210$
Sign $0.0921 + 0.995i$
Analytic cond. $1.67685$
Root an. cond. $1.29493$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)2-s + (−1.01 + 1.40i)3-s + (−0.499 − 0.866i)4-s + (−0.792 − 2.09i)5-s + (0.707 + 1.58i)6-s + (1.41 − 2.23i)7-s − 0.999·8-s + (−0.936 − 2.85i)9-s + (−2.20 − 0.358i)10-s + (4.05 − 2.34i)11-s + (1.72 + 0.178i)12-s + 1.04·13-s + (−1.22 − 2.34i)14-s + (3.73 + 1.01i)15-s + (−0.5 + 0.866i)16-s + (−2.73 + 1.58i)17-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (−0.586 + 0.809i)3-s + (−0.249 − 0.433i)4-s + (−0.354 − 0.935i)5-s + (0.288 + 0.645i)6-s + (0.534 − 0.845i)7-s − 0.353·8-s + (−0.312 − 0.950i)9-s + (−0.697 − 0.113i)10-s + (1.22 − 0.706i)11-s + (0.497 + 0.0514i)12-s + 0.289·13-s + (−0.328 − 0.626i)14-s + (0.965 + 0.261i)15-s + (−0.125 + 0.216i)16-s + (−0.664 + 0.383i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0921 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0921 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(210\)    =    \(2 \cdot 3 \cdot 5 \cdot 7\)
Sign: $0.0921 + 0.995i$
Analytic conductor: \(1.67685\)
Root analytic conductor: \(1.29493\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{210} (89, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 210,\ (\ :1/2),\ 0.0921 + 0.995i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.837630 - 0.763662i\)
\(L(\frac12)\) \(\approx\) \(0.837630 - 0.763662i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 + 0.866i)T \)
3 \( 1 + (1.01 - 1.40i)T \)
5 \( 1 + (0.792 + 2.09i)T \)
7 \( 1 + (-1.41 + 2.23i)T \)
good11 \( 1 + (-4.05 + 2.34i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 - 1.04T + 13T^{2} \)
17 \( 1 + (2.73 - 1.58i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.23 + 0.715i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-2.23 + 3.87i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 - 6.92iT - 29T^{2} \)
31 \( 1 + (5.73 - 3.31i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (-2.30 - 1.33i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 - 1.04T + 41T^{2} \)
43 \( 1 + 6.92iT - 43T^{2} \)
47 \( 1 + (-9.71 - 5.60i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-2.5 - 4.33i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-5.28 - 9.15i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-3 - 1.73i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (-12.3 + 7.13i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + 6.92iT - 71T^{2} \)
73 \( 1 + (-1.75 - 3.03i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (5.73 - 9.93i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 4.06iT - 83T^{2} \)
89 \( 1 + (-2.45 + 4.25i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + 11.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.00561307611542362166932178977, −11.09020118344583202034605785485, −10.61639546660014444503872182748, −9.162792204086609005694961823043, −8.630310921534329304600773391109, −6.79394772655997642137231213986, −5.47431791884623793554366099270, −4.38180179470814372402225627226, −3.74480962321032956981540631181, −1.04449690019133177355864368347, 2.23908115222411409264650455295, 4.11837391188203029278525010807, 5.55481585414839716755843652623, 6.51804621938133689878056846632, 7.27215269532361589507926890620, 8.274123477170581697869821328481, 9.526097633699303435693480681945, 11.22065179636784123463909516342, 11.59471108867548496538818172674, 12.54483348893051916972281502952

Graph of the $Z$-function along the critical line