Properties

Label 2-21-7.3-c10-0-9
Degree $2$
Conductor $21$
Sign $0.888 - 0.458i$
Analytic cond. $13.3425$
Root an. cond. $3.65273$
Motivic weight $10$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (23.8 + 41.2i)2-s + (−121.5 − 70.1i)3-s + (−621. + 1.07e3i)4-s + (4.63e3 − 2.67e3i)5-s − 6.67e3i·6-s + (−5.75e3 − 1.57e4i)7-s − 1.04e4·8-s + (9.84e3 + 1.70e4i)9-s + (2.20e5 + 1.27e5i)10-s + (1.16e5 − 2.02e5i)11-s + (1.51e5 − 8.71e4i)12-s + 3.20e5i·13-s + (5.14e5 − 6.13e5i)14-s − 7.51e5·15-s + (3.88e5 + 6.72e5i)16-s + (5.90e5 + 3.40e5i)17-s + ⋯
L(s)  = 1  + (0.743 + 1.28i)2-s + (−0.5 − 0.288i)3-s + (−0.606 + 1.05i)4-s + (1.48 − 0.856i)5-s − 0.859i·6-s + (−0.342 − 0.939i)7-s − 0.317·8-s + (0.166 + 0.288i)9-s + (2.20 + 1.27i)10-s + (0.725 − 1.25i)11-s + (0.606 − 0.350i)12-s + 0.863i·13-s + (0.955 − 1.14i)14-s − 0.989·15-s + (0.370 + 0.641i)16-s + (0.415 + 0.240i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.888 - 0.458i)\, \overline{\Lambda}(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & (0.888 - 0.458i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21\)    =    \(3 \cdot 7\)
Sign: $0.888 - 0.458i$
Analytic conductor: \(13.3425\)
Root analytic conductor: \(3.65273\)
Motivic weight: \(10\)
Rational: no
Arithmetic: yes
Character: $\chi_{21} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 21,\ (\ :5),\ 0.888 - 0.458i)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(2.80378 + 0.680585i\)
\(L(\frac12)\) \(\approx\) \(2.80378 + 0.680585i\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (121.5 + 70.1i)T \)
7 \( 1 + (5.75e3 + 1.57e4i)T \)
good2 \( 1 + (-23.8 - 41.2i)T + (-512 + 886. i)T^{2} \)
5 \( 1 + (-4.63e3 + 2.67e3i)T + (4.88e6 - 8.45e6i)T^{2} \)
11 \( 1 + (-1.16e5 + 2.02e5i)T + (-1.29e10 - 2.24e10i)T^{2} \)
13 \( 1 - 3.20e5iT - 1.37e11T^{2} \)
17 \( 1 + (-5.90e5 - 3.40e5i)T + (1.00e12 + 1.74e12i)T^{2} \)
19 \( 1 + (1.45e6 - 8.38e5i)T + (3.06e12 - 5.30e12i)T^{2} \)
23 \( 1 + (3.23e6 + 5.60e6i)T + (-2.07e13 + 3.58e13i)T^{2} \)
29 \( 1 - 3.89e7T + 4.20e14T^{2} \)
31 \( 1 + (-8.51e6 - 4.91e6i)T + (4.09e14 + 7.09e14i)T^{2} \)
37 \( 1 + (3.50e7 + 6.06e7i)T + (-2.40e15 + 4.16e15i)T^{2} \)
41 \( 1 - 1.03e6iT - 1.34e16T^{2} \)
43 \( 1 + 7.79e7T + 2.16e16T^{2} \)
47 \( 1 + (9.76e6 - 5.63e6i)T + (2.62e16 - 4.55e16i)T^{2} \)
53 \( 1 + (2.05e8 - 3.56e8i)T + (-8.74e16 - 1.51e17i)T^{2} \)
59 \( 1 + (-7.52e8 - 4.34e8i)T + (2.55e17 + 4.42e17i)T^{2} \)
61 \( 1 + (1.35e9 - 7.81e8i)T + (3.56e17 - 6.17e17i)T^{2} \)
67 \( 1 + (2.66e8 - 4.61e8i)T + (-9.11e17 - 1.57e18i)T^{2} \)
71 \( 1 + 5.77e8T + 3.25e18T^{2} \)
73 \( 1 + (-6.26e8 - 3.61e8i)T + (2.14e18 + 3.72e18i)T^{2} \)
79 \( 1 + (-5.84e8 - 1.01e9i)T + (-4.73e18 + 8.19e18i)T^{2} \)
83 \( 1 + 6.01e8iT - 1.55e19T^{2} \)
89 \( 1 + (7.28e9 - 4.20e9i)T + (1.55e19 - 2.70e19i)T^{2} \)
97 \( 1 - 4.45e9iT - 7.37e19T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.43786439990412967840397166356, −14.07705586490267730903368381572, −13.78432825471805295109951778334, −12.51545487501600472788989834065, −10.34758245328076121014403228355, −8.589331991911839682406208928800, −6.60648799193054094394889206311, −5.91610517948790998629632692457, −4.41379154652120435670625716433, −1.19507804368480801283459737775, 1.77514828887661369522662285912, 2.99611571567939714972433355402, 5.06232996189546522117518739771, 6.41479551818110238178204463542, 9.688154642476043381681109305631, 10.28914845205267651028059301709, 11.79045251912445900671531727165, 12.80992660012507468463398082716, 14.08121204259494731624988632695, 15.26035067735906065181744289176

Graph of the $Z$-function along the critical line