Properties

Label 8-209e4-1.1-c0e4-0-0
Degree $8$
Conductor $1908029761$
Sign $1$
Analytic cond. $0.000118362$
Root an. cond. $0.322962$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4-s − 2·5-s + 3·9-s + 2·12-s + 4·15-s + 16-s + 2·20-s − 2·23-s + 3·25-s − 6·27-s − 3·36-s − 6·45-s − 2·47-s − 2·48-s + 4·49-s + 2·53-s − 2·59-s − 4·60-s − 2·64-s + 2·67-s + 4·69-s + 2·71-s − 6·75-s − 2·80-s + 9·81-s + 2·89-s + ⋯
L(s)  = 1  − 2·3-s − 4-s − 2·5-s + 3·9-s + 2·12-s + 4·15-s + 16-s + 2·20-s − 2·23-s + 3·25-s − 6·27-s − 3·36-s − 6·45-s − 2·47-s − 2·48-s + 4·49-s + 2·53-s − 2·59-s − 4·60-s − 2·64-s + 2·67-s + 4·69-s + 2·71-s − 6·75-s − 2·80-s + 9·81-s + 2·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(11^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(11^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(11^{4} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(0.000118362\)
Root analytic conductor: \(0.322962\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 11^{4} \cdot 19^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.07721321722\)
\(L(\frac12)\) \(\approx\) \(0.07721321722\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad11$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
good2$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
3$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
5$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
13$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
17$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
23$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
29$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
31$C_2$ \( ( 1 + T^{2} )^{4} \)
37$C_2$ \( ( 1 + T^{2} )^{4} \)
41$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
43$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
47$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
53$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
59$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
61$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
71$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
73$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
79$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
89$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.286152006837159410921583694631, −9.257399679108936937285452352229, −8.896500537691307310573059846531, −8.356505921760740358469166939759, −8.126077049385331757629198513289, −7.937765826060003358994047612184, −7.67700773859091867137421939992, −7.49654642368921679881128986129, −7.26017384000536900167833545953, −6.88681237941367835627296456317, −6.50970759583906678405247129157, −6.28222701480822907240696897913, −6.05319430970867544832352090710, −5.51610305641054235868624484660, −5.32233397059735394131619071092, −5.26195979361529551607184963417, −4.73452519105335723026706593379, −4.26725185241816332100587755687, −4.25124197981855078489667822928, −3.89465344068019022949133309138, −3.63268237617458772500686740622, −3.39534326667322651269387170485, −2.41337242316046704063508091015, −1.88468753944685974228414804407, −0.901751596604895672152761298906, 0.901751596604895672152761298906, 1.88468753944685974228414804407, 2.41337242316046704063508091015, 3.39534326667322651269387170485, 3.63268237617458772500686740622, 3.89465344068019022949133309138, 4.25124197981855078489667822928, 4.26725185241816332100587755687, 4.73452519105335723026706593379, 5.26195979361529551607184963417, 5.32233397059735394131619071092, 5.51610305641054235868624484660, 6.05319430970867544832352090710, 6.28222701480822907240696897913, 6.50970759583906678405247129157, 6.88681237941367835627296456317, 7.26017384000536900167833545953, 7.49654642368921679881128986129, 7.67700773859091867137421939992, 7.937765826060003358994047612184, 8.126077049385331757629198513289, 8.356505921760740358469166939759, 8.896500537691307310573059846531, 9.257399679108936937285452352229, 9.286152006837159410921583694631

Graph of the $Z$-function along the critical line