Properties

Label 6-207e3-1.1-c5e3-0-0
Degree $6$
Conductor $8869743$
Sign $1$
Analytic cond. $36592.5$
Root an. cond. $5.76189$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 5·4-s + 56·5-s − 114·7-s − 126·8-s + 448·10-s + 376·11-s − 858·13-s − 912·14-s + 857·16-s + 2.54e3·17-s − 2.84e3·19-s − 280·20-s + 3.00e3·22-s − 1.58e3·23-s − 2.74e3·25-s − 6.86e3·26-s + 570·28-s + 1.63e4·29-s − 1.47e4·31-s + 3.74e3·32-s + 2.03e4·34-s − 6.38e3·35-s + 1.58e4·37-s − 2.27e4·38-s − 7.05e3·40-s − 1.26e4·41-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.156·4-s + 1.00·5-s − 0.879·7-s − 0.696·8-s + 1.41·10-s + 0.936·11-s − 1.40·13-s − 1.24·14-s + 0.836·16-s + 2.13·17-s − 1.80·19-s − 0.156·20-s + 1.32·22-s − 0.625·23-s − 0.877·25-s − 1.99·26-s + 0.137·28-s + 3.61·29-s − 2.75·31-s + 0.647·32-s + 3.02·34-s − 0.880·35-s + 1.90·37-s − 2.55·38-s − 0.697·40-s − 1.17·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8869743 ^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8869743 ^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(8869743\)    =    \(3^{6} \cdot 23^{3}\)
Sign: $1$
Analytic conductor: \(36592.5\)
Root analytic conductor: \(5.76189\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 8869743,\ (\ :5/2, 5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.436987701\)
\(L(\frac12)\) \(\approx\) \(3.436987701\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
23$C_1$ \( ( 1 + p^{2} T )^{3} \)
good2$S_4\times C_2$ \( 1 - p^{3} T + 69 T^{2} - 233 p T^{3} + 69 p^{5} T^{4} - p^{13} T^{5} + p^{15} T^{6} \)
5$S_4\times C_2$ \( 1 - 56 T + 5879 T^{2} - 154424 T^{3} + 5879 p^{5} T^{4} - 56 p^{10} T^{5} + p^{15} T^{6} \)
7$S_4\times C_2$ \( 1 + 114 T + 29473 T^{2} + 3883732 T^{3} + 29473 p^{5} T^{4} + 114 p^{10} T^{5} + p^{15} T^{6} \)
11$S_4\times C_2$ \( 1 - 376 T + 252481 T^{2} - 142251704 T^{3} + 252481 p^{5} T^{4} - 376 p^{10} T^{5} + p^{15} T^{6} \)
13$S_4\times C_2$ \( 1 + 66 p T + 673923 T^{2} + 268856412 T^{3} + 673923 p^{5} T^{4} + 66 p^{11} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 - 2548 T + 5764387 T^{2} - 7106478632 T^{3} + 5764387 p^{5} T^{4} - 2548 p^{10} T^{5} + p^{15} T^{6} \)
19$S_4\times C_2$ \( 1 + 2846 T + 487079 p T^{2} + 14089642340 T^{3} + 487079 p^{6} T^{4} + 2846 p^{10} T^{5} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 - 16370 T + 143935155 T^{2} - 789370759340 T^{3} + 143935155 p^{5} T^{4} - 16370 p^{10} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 + 476 p T + 138580077 T^{2} + 861567646264 T^{3} + 138580077 p^{5} T^{4} + 476 p^{11} T^{5} + p^{15} T^{6} \)
37$S_4\times C_2$ \( 1 - 15874 T + 283329963 T^{2} - 2305001420148 T^{3} + 283329963 p^{5} T^{4} - 15874 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 + 12606 T + 331997335 T^{2} + 2707384025828 T^{3} + 331997335 p^{5} T^{4} + 12606 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 - 3154 T + 339001869 T^{2} - 517383556556 T^{3} + 339001869 p^{5} T^{4} - 3154 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 + 29928 T + 824463709 T^{2} + 13203001936176 T^{3} + 824463709 p^{5} T^{4} + 29928 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 - 44084 T + 710047655 T^{2} - 6683794054544 T^{3} + 710047655 p^{5} T^{4} - 44084 p^{10} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 - 29300 T + 1744914257 T^{2} - 37824050997176 T^{3} + 1744914257 p^{5} T^{4} - 29300 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 - 54010 T + 3288997283 T^{2} - 91927672344788 T^{3} + 3288997283 p^{5} T^{4} - 54010 p^{10} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 - 43390 T + 1100710197 T^{2} + 11754561587628 T^{3} + 1100710197 p^{5} T^{4} - 43390 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 + 23424 T + 4239683749 T^{2} + 58278976303616 T^{3} + 4239683749 p^{5} T^{4} + 23424 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 + 91402 T + 5485513767 T^{2} + 259506540394092 T^{3} + 5485513767 p^{5} T^{4} + 91402 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 + 49398 T + 5918352025 T^{2} + 210022241166364 T^{3} + 5918352025 p^{5} T^{4} + 49398 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 - 103936 T + 5338515353 T^{2} - 124565773223896 T^{3} + 5338515353 p^{5} T^{4} - 103936 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 + 96112 T + 15326136523 T^{2} + 970745006227616 T^{3} + 15326136523 p^{5} T^{4} + 96112 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 + 135318 T + 21864400719 T^{2} + 2241137600844532 T^{3} + 21864400719 p^{5} T^{4} + 135318 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19439585579308163907718514878, −9.927024328009443525797820739960, −9.696759384747092465244397555437, −9.488436408600800148436575361041, −8.809047205588412369275925778449, −8.520397999797927016256298347919, −8.316848895164770491356344883305, −7.63946434256283661766111861894, −7.52315990871588891008226601862, −6.90607445899138641051915510950, −6.41181435333456567436290540954, −6.33336576564512094649636509210, −5.90791978655439757138391249423, −5.32332555503613775903217341612, −5.13700977436336546507746748249, −4.98482712103859096299220930750, −4.09341743042407156704099503769, −3.98427442740634116310155600764, −3.88163664816850123492767152290, −2.94139719933452043445025123526, −2.83610359431614616422093255194, −2.04170767010666991283045505902, −1.60851695304091276572345095134, −0.967008732056182976080419624387, −0.28653815402937130228886915298, 0.28653815402937130228886915298, 0.967008732056182976080419624387, 1.60851695304091276572345095134, 2.04170767010666991283045505902, 2.83610359431614616422093255194, 2.94139719933452043445025123526, 3.88163664816850123492767152290, 3.98427442740634116310155600764, 4.09341743042407156704099503769, 4.98482712103859096299220930750, 5.13700977436336546507746748249, 5.32332555503613775903217341612, 5.90791978655439757138391249423, 6.33336576564512094649636509210, 6.41181435333456567436290540954, 6.90607445899138641051915510950, 7.52315990871588891008226601862, 7.63946434256283661766111861894, 8.316848895164770491356344883305, 8.520397999797927016256298347919, 8.809047205588412369275925778449, 9.488436408600800148436575361041, 9.696759384747092465244397555437, 9.927024328009443525797820739960, 10.19439585579308163907718514878

Graph of the $Z$-function along the critical line