Properties

Label 2-2034-339.338-c2-0-52
Degree $2$
Conductor $2034$
Sign $-0.843 + 0.537i$
Analytic cond. $55.4224$
Root an. cond. $7.44462$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41i·2-s − 2.00·4-s − 2.80·5-s + 4.63·7-s + 2.82i·8-s + 3.96i·10-s + 15.7i·11-s − 0.726·13-s − 6.55i·14-s + 4.00·16-s − 22.6·17-s − 5.82i·19-s + 5.60·20-s + 22.2·22-s − 7.17·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.500·4-s − 0.560·5-s + 0.661·7-s + 0.353i·8-s + 0.396i·10-s + 1.43i·11-s − 0.0558·13-s − 0.468i·14-s + 0.250·16-s − 1.33·17-s − 0.306i·19-s + 0.280·20-s + 1.01·22-s − 0.312·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2034 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.843 + 0.537i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2034 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.843 + 0.537i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2034\)    =    \(2 \cdot 3^{2} \cdot 113\)
Sign: $-0.843 + 0.537i$
Analytic conductor: \(55.4224\)
Root analytic conductor: \(7.44462\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2034} (2033, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2034,\ (\ :1),\ -0.843 + 0.537i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.8034434568\)
\(L(\frac12)\) \(\approx\) \(0.8034434568\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 1.41iT \)
3 \( 1 \)
113 \( 1 + (-112. - 5.38i)T \)
good5 \( 1 + 2.80T + 25T^{2} \)
7 \( 1 - 4.63T + 49T^{2} \)
11 \( 1 - 15.7iT - 121T^{2} \)
13 \( 1 + 0.726T + 169T^{2} \)
17 \( 1 + 22.6T + 289T^{2} \)
19 \( 1 + 5.82iT - 361T^{2} \)
23 \( 1 + 7.17T + 529T^{2} \)
29 \( 1 - 29.3T + 841T^{2} \)
31 \( 1 - 8.55T + 961T^{2} \)
37 \( 1 + 19.2iT - 1.36e3T^{2} \)
41 \( 1 - 56.5iT - 1.68e3T^{2} \)
43 \( 1 + 44.8iT - 1.84e3T^{2} \)
47 \( 1 - 2.03T + 2.20e3T^{2} \)
53 \( 1 + 74.9iT - 2.80e3T^{2} \)
59 \( 1 - 84.2T + 3.48e3T^{2} \)
61 \( 1 - 34.5T + 3.72e3T^{2} \)
67 \( 1 + 70.5iT - 4.48e3T^{2} \)
71 \( 1 + 46.9T + 5.04e3T^{2} \)
73 \( 1 + 58.3iT - 5.32e3T^{2} \)
79 \( 1 + 105. iT - 6.24e3T^{2} \)
83 \( 1 + 68.2iT - 6.88e3T^{2} \)
89 \( 1 - 116.T + 7.92e3T^{2} \)
97 \( 1 - 90.6T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.660241460982951903003110804183, −7.979005409493081369660006304167, −7.19462494758190207031581886454, −6.34983622909073759128093422889, −4.96928379599805459642698027113, −4.55896524849097482606993671552, −3.72920513668191848140799494331, −2.43390594501064025929387694233, −1.73115461842906499336437603514, −0.23440959392729308527277281957, 1.00515324621468446525697986582, 2.52921022166146818818884210338, 3.74265636446706429350232189624, 4.42946079823538149523877591655, 5.37396272155354978141465757622, 6.16612858009513963835483622748, 6.91138169015755466544078200592, 7.87850692303695819077776403094, 8.383796373240948086059795017299, 8.900182079104510940020367036004

Graph of the $Z$-function along the critical line