Properties

Label 2-2034-339.338-c2-0-63
Degree $2$
Conductor $2034$
Sign $-0.254 + 0.966i$
Analytic cond. $55.4224$
Root an. cond. $7.44462$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41i·2-s − 2.00·4-s + 4.88·5-s − 5.78·7-s − 2.82i·8-s + 6.91i·10-s + 19.4i·11-s + 6.00·13-s − 8.17i·14-s + 4.00·16-s − 14.4·17-s − 21.2i·19-s − 9.77·20-s − 27.4·22-s − 12.7·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.500·4-s + 0.977·5-s − 0.825·7-s − 0.353i·8-s + 0.691i·10-s + 1.76i·11-s + 0.461·13-s − 0.583i·14-s + 0.250·16-s − 0.849·17-s − 1.11i·19-s − 0.488·20-s − 1.24·22-s − 0.552·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2034 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.254 + 0.966i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2034 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.254 + 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2034\)    =    \(2 \cdot 3^{2} \cdot 113\)
Sign: $-0.254 + 0.966i$
Analytic conductor: \(55.4224\)
Root analytic conductor: \(7.44462\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2034} (2033, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2034,\ (\ :1),\ -0.254 + 0.966i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.09041117488\)
\(L(\frac12)\) \(\approx\) \(0.09041117488\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 1.41iT \)
3 \( 1 \)
113 \( 1 + (39.5 + 105. i)T \)
good5 \( 1 - 4.88T + 25T^{2} \)
7 \( 1 + 5.78T + 49T^{2} \)
11 \( 1 - 19.4iT - 121T^{2} \)
13 \( 1 - 6.00T + 169T^{2} \)
17 \( 1 + 14.4T + 289T^{2} \)
19 \( 1 + 21.2iT - 361T^{2} \)
23 \( 1 + 12.7T + 529T^{2} \)
29 \( 1 + 35.8T + 841T^{2} \)
31 \( 1 - 27.2T + 961T^{2} \)
37 \( 1 + 27.0iT - 1.36e3T^{2} \)
41 \( 1 + 8.57iT - 1.68e3T^{2} \)
43 \( 1 - 6.75iT - 1.84e3T^{2} \)
47 \( 1 - 21.0T + 2.20e3T^{2} \)
53 \( 1 - 48.9iT - 2.80e3T^{2} \)
59 \( 1 - 5.43T + 3.48e3T^{2} \)
61 \( 1 + 16.8T + 3.72e3T^{2} \)
67 \( 1 + 8.46iT - 4.48e3T^{2} \)
71 \( 1 + 103.T + 5.04e3T^{2} \)
73 \( 1 + 11.1iT - 5.32e3T^{2} \)
79 \( 1 + 65.6iT - 6.24e3T^{2} \)
83 \( 1 - 2.76iT - 6.88e3T^{2} \)
89 \( 1 - 158.T + 7.92e3T^{2} \)
97 \( 1 + 160.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.014581753889278374426733755509, −7.74877716492290303682141511681, −7.03130056297964669022966077059, −6.41467389204870749825237364533, −5.72670380622483071794809405596, −4.75614076777648255563855628997, −4.02281449695544343116060710954, −2.64496857672076874266751679442, −1.73665326257224231683764296102, −0.02201791132357468102934725597, 1.26263384922969400838235738483, 2.34208468535676341936782360186, 3.31146220191767001730838311937, 3.96123144198961317121088387371, 5.32287518204878111756380887620, 6.07042014969557925339659463736, 6.42885139820013705768238478225, 7.88515181598994916978663465108, 8.631918838502872198187805132694, 9.281154837954168189693744001813

Graph of the $Z$-function along the critical line