| L(s) = 1 | + 2-s + 4-s + 1.63i·5-s + 3.55·7-s + 8-s + 1.63i·10-s + 3.33·11-s − 1.82·13-s + 3.55·14-s + 16-s − 0.106i·17-s + 4.06i·19-s + 1.63i·20-s + 3.33·22-s − 8.58i·23-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 0.5·4-s + 0.733i·5-s + 1.34·7-s + 0.353·8-s + 0.518i·10-s + 1.00·11-s − 0.506·13-s + 0.950·14-s + 0.250·16-s − 0.0258i·17-s + 0.932i·19-s + 0.366i·20-s + 0.710·22-s − 1.78i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2034 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 - 0.471i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2034 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.881 - 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.442682902\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.442682902\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 113 | \( 1 + (9.37 - 5.01i)T \) |
| good | 5 | \( 1 - 1.63iT - 5T^{2} \) |
| 7 | \( 1 - 3.55T + 7T^{2} \) |
| 11 | \( 1 - 3.33T + 11T^{2} \) |
| 13 | \( 1 + 1.82T + 13T^{2} \) |
| 17 | \( 1 + 0.106iT - 17T^{2} \) |
| 19 | \( 1 - 4.06iT - 19T^{2} \) |
| 23 | \( 1 + 8.58iT - 23T^{2} \) |
| 29 | \( 1 + 3.75iT - 29T^{2} \) |
| 31 | \( 1 - 4.64T + 31T^{2} \) |
| 37 | \( 1 - 4.24iT - 37T^{2} \) |
| 41 | \( 1 + 7.62T + 41T^{2} \) |
| 43 | \( 1 - 11.8iT - 43T^{2} \) |
| 47 | \( 1 - 3.97iT - 47T^{2} \) |
| 53 | \( 1 + 7.55T + 53T^{2} \) |
| 59 | \( 1 - 3.60iT - 59T^{2} \) |
| 61 | \( 1 + 1.82T + 61T^{2} \) |
| 67 | \( 1 + 10.3iT - 67T^{2} \) |
| 71 | \( 1 + 2.25iT - 71T^{2} \) |
| 73 | \( 1 + 14.1iT - 73T^{2} \) |
| 79 | \( 1 - 4.19iT - 79T^{2} \) |
| 83 | \( 1 - 8.51T + 83T^{2} \) |
| 89 | \( 1 + 10.6iT - 89T^{2} \) |
| 97 | \( 1 - 17.1T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.177560661036899782141696784791, −8.145727527971587122277823350413, −7.71082656898929472955197756735, −6.48824635068822236084354829909, −6.30813687282066532071911792318, −4.84997373225421163175518474488, −4.54567687485822805087611683761, −3.39450093463639182122679742165, −2.41422636937817928100301349482, −1.37640595930819042394200435957,
1.17176305778321780327489438332, 2.03039281902100178525800764842, 3.40199361499215932352142370020, 4.35242699206042715101628456548, 5.04061035419284437521122710031, 5.53565568904878562393455165706, 6.80230984952629457457825565117, 7.37343647748954598472541528072, 8.363444237725337152259799313833, 8.935606445969056321374218384710