Properties

Label 2-2034-113.112-c1-0-31
Degree $2$
Conductor $2034$
Sign $0.991 + 0.129i$
Analytic cond. $16.2415$
Root an. cond. $4.03008$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 1.07i·5-s + 2.64·7-s + 8-s + 1.07i·10-s − 3.85·11-s + 5.91·13-s + 2.64·14-s + 16-s − 7.35i·17-s − 7.16i·19-s + 1.07i·20-s − 3.85·22-s + 1.57i·23-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.481i·5-s + 0.999·7-s + 0.353·8-s + 0.340i·10-s − 1.16·11-s + 1.63·13-s + 0.706·14-s + 0.250·16-s − 1.78i·17-s − 1.64i·19-s + 0.240i·20-s − 0.822·22-s + 0.328i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2034 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.129i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2034 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 + 0.129i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2034\)    =    \(2 \cdot 3^{2} \cdot 113\)
Sign: $0.991 + 0.129i$
Analytic conductor: \(16.2415\)
Root analytic conductor: \(4.03008\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2034} (451, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2034,\ (\ :1/2),\ 0.991 + 0.129i)\)

Particular Values

\(L(1)\) \(\approx\) \(3.207776049\)
\(L(\frac12)\) \(\approx\) \(3.207776049\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
113 \( 1 + (10.5 + 1.38i)T \)
good5 \( 1 - 1.07iT - 5T^{2} \)
7 \( 1 - 2.64T + 7T^{2} \)
11 \( 1 + 3.85T + 11T^{2} \)
13 \( 1 - 5.91T + 13T^{2} \)
17 \( 1 + 7.35iT - 17T^{2} \)
19 \( 1 + 7.16iT - 19T^{2} \)
23 \( 1 - 1.57iT - 23T^{2} \)
29 \( 1 + 0.967iT - 29T^{2} \)
31 \( 1 + 1.01T + 31T^{2} \)
37 \( 1 - 9.52iT - 37T^{2} \)
41 \( 1 - 3.46T + 41T^{2} \)
43 \( 1 - 6.84iT - 43T^{2} \)
47 \( 1 + 2.55iT - 47T^{2} \)
53 \( 1 - 10.5T + 53T^{2} \)
59 \( 1 - 13.8iT - 59T^{2} \)
61 \( 1 - 5.91T + 61T^{2} \)
67 \( 1 - 11.7iT - 67T^{2} \)
71 \( 1 + 3.03iT - 71T^{2} \)
73 \( 1 + 9.40iT - 73T^{2} \)
79 \( 1 + 6.08iT - 79T^{2} \)
83 \( 1 + 6.33T + 83T^{2} \)
89 \( 1 + 0.303iT - 89T^{2} \)
97 \( 1 + 12.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.971981908760634061712374746305, −8.288238813230687666858372263674, −7.37398092678981486448593750486, −6.83917479310810068046321379038, −5.77573519659933877281287158028, −5.02254671353505905686881929795, −4.42392709523973684555189716834, −3.09172067202817347788906542366, −2.55713441492918321199821186960, −1.07454219606424740680531417801, 1.30316443384326401879076099463, 2.15885868118422871402319694801, 3.65076767761458691414054053361, 4.12036647456626900208700831211, 5.31329371364164488156676025834, 5.69571275689026742033397731797, 6.59163503184928537204119256313, 7.87020789577745320089825803816, 8.197394294125525584409368888875, 8.865342182195044968346565771844

Graph of the $Z$-function along the critical line