Properties

Label 2-45e2-1.1-c3-0-81
Degree $2$
Conductor $2025$
Sign $1$
Analytic cond. $119.478$
Root an. cond. $10.9306$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.52·2-s + 4.41·4-s − 25.4·7-s + 12.6·8-s + 71.3·11-s + 51.3·13-s + 89.6·14-s − 79.8·16-s − 33.3·17-s + 113.·19-s − 251.·22-s + 81.9·23-s − 181.·26-s − 112.·28-s + 246.·29-s + 222.·31-s + 180.·32-s + 117.·34-s − 22.3·37-s − 399.·38-s + 434.·41-s + 236.·43-s + 315.·44-s − 288.·46-s − 107.·47-s + 303.·49-s + 226.·52-s + ⋯
L(s)  = 1  − 1.24·2-s + 0.551·4-s − 1.37·7-s + 0.558·8-s + 1.95·11-s + 1.09·13-s + 1.71·14-s − 1.24·16-s − 0.475·17-s + 1.36·19-s − 2.43·22-s + 0.743·23-s − 1.36·26-s − 0.757·28-s + 1.58·29-s + 1.29·31-s + 0.995·32-s + 0.592·34-s − 0.0994·37-s − 1.70·38-s + 1.65·41-s + 0.839·43-s + 1.07·44-s − 0.925·46-s − 0.335·47-s + 0.885·49-s + 0.605·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2025\)    =    \(3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(119.478\)
Root analytic conductor: \(10.9306\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2025,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.325552439\)
\(L(\frac12)\) \(\approx\) \(1.325552439\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 3.52T + 8T^{2} \)
7 \( 1 + 25.4T + 343T^{2} \)
11 \( 1 - 71.3T + 1.33e3T^{2} \)
13 \( 1 - 51.3T + 2.19e3T^{2} \)
17 \( 1 + 33.3T + 4.91e3T^{2} \)
19 \( 1 - 113.T + 6.85e3T^{2} \)
23 \( 1 - 81.9T + 1.21e4T^{2} \)
29 \( 1 - 246.T + 2.43e4T^{2} \)
31 \( 1 - 222.T + 2.97e4T^{2} \)
37 \( 1 + 22.3T + 5.06e4T^{2} \)
41 \( 1 - 434.T + 6.89e4T^{2} \)
43 \( 1 - 236.T + 7.95e4T^{2} \)
47 \( 1 + 107.T + 1.03e5T^{2} \)
53 \( 1 + 123.T + 1.48e5T^{2} \)
59 \( 1 + 171.T + 2.05e5T^{2} \)
61 \( 1 + 79.4T + 2.26e5T^{2} \)
67 \( 1 - 611.T + 3.00e5T^{2} \)
71 \( 1 + 511.T + 3.57e5T^{2} \)
73 \( 1 - 410.T + 3.89e5T^{2} \)
79 \( 1 + 793.T + 4.93e5T^{2} \)
83 \( 1 - 270.T + 5.71e5T^{2} \)
89 \( 1 + 177.T + 7.04e5T^{2} \)
97 \( 1 - 881.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.003619716492601933384916793903, −8.287277606918628533122476557113, −7.21913882369614379778197492121, −6.57255469350118867666588062147, −6.08325337654430023173501611939, −4.57736738896825337167224442246, −3.73609028456032331827459981824, −2.80338874243119669189563638065, −1.23483689083143993658502549481, −0.789063432266332745340188888962, 0.789063432266332745340188888962, 1.23483689083143993658502549481, 2.80338874243119669189563638065, 3.73609028456032331827459981824, 4.57736738896825337167224442246, 6.08325337654430023173501611939, 6.57255469350118867666588062147, 7.21913882369614379778197492121, 8.287277606918628533122476557113, 9.003619716492601933384916793903

Graph of the $Z$-function along the critical line