Properties

Label 2-45e2-1.1-c3-0-119
Degree $2$
Conductor $2025$
Sign $-1$
Analytic cond. $119.478$
Root an. cond. $10.9306$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.37·2-s − 6.11·4-s + 5.11·7-s + 19.3·8-s − 55.9·11-s − 37.5·13-s − 7.02·14-s + 22.3·16-s + 23.6·17-s + 39.0·19-s + 76.8·22-s + 71.0·23-s + 51.5·26-s − 31.2·28-s + 28.3·29-s + 12.8·31-s − 185.·32-s − 32.4·34-s + 180.·37-s − 53.5·38-s + 215.·41-s − 61.2·43-s + 342.·44-s − 97.5·46-s − 61.8·47-s − 316.·49-s + 229.·52-s + ⋯
L(s)  = 1  − 0.485·2-s − 0.764·4-s + 0.276·7-s + 0.856·8-s − 1.53·11-s − 0.801·13-s − 0.134·14-s + 0.349·16-s + 0.337·17-s + 0.471·19-s + 0.744·22-s + 0.644·23-s + 0.389·26-s − 0.211·28-s + 0.181·29-s + 0.0746·31-s − 1.02·32-s − 0.163·34-s + 0.800·37-s − 0.228·38-s + 0.820·41-s − 0.217·43-s + 1.17·44-s − 0.312·46-s − 0.192·47-s − 0.923·49-s + 0.613·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2025\)    =    \(3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(119.478\)
Root analytic conductor: \(10.9306\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2025,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 1.37T + 8T^{2} \)
7 \( 1 - 5.11T + 343T^{2} \)
11 \( 1 + 55.9T + 1.33e3T^{2} \)
13 \( 1 + 37.5T + 2.19e3T^{2} \)
17 \( 1 - 23.6T + 4.91e3T^{2} \)
19 \( 1 - 39.0T + 6.85e3T^{2} \)
23 \( 1 - 71.0T + 1.21e4T^{2} \)
29 \( 1 - 28.3T + 2.43e4T^{2} \)
31 \( 1 - 12.8T + 2.97e4T^{2} \)
37 \( 1 - 180.T + 5.06e4T^{2} \)
41 \( 1 - 215.T + 6.89e4T^{2} \)
43 \( 1 + 61.2T + 7.95e4T^{2} \)
47 \( 1 + 61.8T + 1.03e5T^{2} \)
53 \( 1 - 492.T + 1.48e5T^{2} \)
59 \( 1 + 789.T + 2.05e5T^{2} \)
61 \( 1 - 521.T + 2.26e5T^{2} \)
67 \( 1 + 304.T + 3.00e5T^{2} \)
71 \( 1 + 270.T + 3.57e5T^{2} \)
73 \( 1 - 925.T + 3.89e5T^{2} \)
79 \( 1 + 1.28e3T + 4.93e5T^{2} \)
83 \( 1 - 713.T + 5.71e5T^{2} \)
89 \( 1 - 404.T + 7.04e5T^{2} \)
97 \( 1 + 75.0T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.329473670039198788071047423341, −7.75254506046487691132432071673, −7.20200057680276313778535889193, −5.83734158005811905783195171427, −5.05221691894350691474010169319, −4.55762776552464795565990851977, −3.29056720081578573632076604100, −2.32034612835706651814651496064, −0.999741528731994651366378859782, 0, 0.999741528731994651366378859782, 2.32034612835706651814651496064, 3.29056720081578573632076604100, 4.55762776552464795565990851977, 5.05221691894350691474010169319, 5.83734158005811905783195171427, 7.20200057680276313778535889193, 7.75254506046487691132432071673, 8.329473670039198788071047423341

Graph of the $Z$-function along the critical line