Properties

Label 2-45e2-1.1-c3-0-52
Degree $2$
Conductor $2025$
Sign $1$
Analytic cond. $119.478$
Root an. cond. $10.9306$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.07·2-s + 8.61·4-s − 13.3·7-s − 2.51·8-s − 11.5·11-s + 40.0·13-s + 54.3·14-s − 58.6·16-s + 93.3·17-s + 75.1·19-s + 47.1·22-s − 142.·23-s − 163.·26-s − 114.·28-s + 174.·29-s + 248.·31-s + 259.·32-s − 380.·34-s − 82.9·37-s − 306.·38-s + 449.·41-s − 279.·43-s − 99.6·44-s + 578.·46-s + 33.8·47-s − 164.·49-s + 345.·52-s + ⋯
L(s)  = 1  − 1.44·2-s + 1.07·4-s − 0.720·7-s − 0.110·8-s − 0.316·11-s + 0.855·13-s + 1.03·14-s − 0.917·16-s + 1.33·17-s + 0.906·19-s + 0.456·22-s − 1.28·23-s − 1.23·26-s − 0.775·28-s + 1.11·29-s + 1.44·31-s + 1.43·32-s − 1.91·34-s − 0.368·37-s − 1.30·38-s + 1.71·41-s − 0.992·43-s − 0.341·44-s + 1.85·46-s + 0.105·47-s − 0.480·49-s + 0.920·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2025\)    =    \(3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(119.478\)
Root analytic conductor: \(10.9306\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2025,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9279648203\)
\(L(\frac12)\) \(\approx\) \(0.9279648203\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 4.07T + 8T^{2} \)
7 \( 1 + 13.3T + 343T^{2} \)
11 \( 1 + 11.5T + 1.33e3T^{2} \)
13 \( 1 - 40.0T + 2.19e3T^{2} \)
17 \( 1 - 93.3T + 4.91e3T^{2} \)
19 \( 1 - 75.1T + 6.85e3T^{2} \)
23 \( 1 + 142.T + 1.21e4T^{2} \)
29 \( 1 - 174.T + 2.43e4T^{2} \)
31 \( 1 - 248.T + 2.97e4T^{2} \)
37 \( 1 + 82.9T + 5.06e4T^{2} \)
41 \( 1 - 449.T + 6.89e4T^{2} \)
43 \( 1 + 279.T + 7.95e4T^{2} \)
47 \( 1 - 33.8T + 1.03e5T^{2} \)
53 \( 1 + 423.T + 1.48e5T^{2} \)
59 \( 1 - 615.T + 2.05e5T^{2} \)
61 \( 1 + 502.T + 2.26e5T^{2} \)
67 \( 1 - 57.7T + 3.00e5T^{2} \)
71 \( 1 - 252.T + 3.57e5T^{2} \)
73 \( 1 + 823.T + 3.89e5T^{2} \)
79 \( 1 + 205.T + 4.93e5T^{2} \)
83 \( 1 - 646.T + 5.71e5T^{2} \)
89 \( 1 - 1.32e3T + 7.04e5T^{2} \)
97 \( 1 - 563.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.792568781995729420183802678567, −8.035559314162226479399864735724, −7.62026208253820051851088961053, −6.55028493394276490940763508554, −5.95674387080457207428185524510, −4.78418620823425874043642028363, −3.59667594526993929640380390601, −2.69037219139650084357239777171, −1.40082793166661906214909051039, −0.60610105440904540375054898335, 0.60610105440904540375054898335, 1.40082793166661906214909051039, 2.69037219139650084357239777171, 3.59667594526993929640380390601, 4.78418620823425874043642028363, 5.95674387080457207428185524510, 6.55028493394276490940763508554, 7.62026208253820051851088961053, 8.035559314162226479399864735724, 8.792568781995729420183802678567

Graph of the $Z$-function along the critical line