Properties

Label 8-2016e4-1.1-c1e4-0-2
Degree $8$
Conductor $1.652\times 10^{13}$
Sign $1$
Analytic cond. $67153.7$
Root an. cond. $4.01221$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 10·17-s + 11·25-s − 32·29-s + 10·37-s − 16·41-s − 2·49-s − 2·53-s − 22·61-s − 30·73-s + 20·85-s + 14·89-s + 48·97-s − 22·101-s + 6·109-s − 16·113-s − 5·121-s + 38·125-s + 127-s + 131-s + 137-s + 139-s − 64·145-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  + 0.894·5-s + 2.42·17-s + 11/5·25-s − 5.94·29-s + 1.64·37-s − 2.49·41-s − 2/7·49-s − 0.274·53-s − 2.81·61-s − 3.51·73-s + 2.16·85-s + 1.48·89-s + 4.87·97-s − 2.18·101-s + 0.574·109-s − 1.50·113-s − 0.454·121-s + 3.39·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5.31·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(67153.7\)
Root analytic conductor: \(4.01221\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7209966255\)
\(L(\frac12)\) \(\approx\) \(0.7209966255\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
good5$C_2^2$ \( ( 1 - T - 4 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^3$ \( 1 + 5 T^{2} - 96 T^{4} + 5 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2$ \( ( 1 + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 5 T + 8 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^3$ \( 1 - 35 T^{2} + 864 T^{4} - 35 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2^3$ \( 1 - 43 T^{2} + 1320 T^{4} - 43 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
31$C_2^2$$\times$$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )( 1 + 59 T^{2} + p^{2} T^{4} ) \)
37$C_2^2$ \( ( 1 - 5 T - 12 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 19 T^{2} - 1848 T^{4} - 19 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 + T - 52 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 - 115 T^{2} + 9744 T^{4} - 115 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 + 11 T + 60 T^{2} + 11 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$$\times$$C_2^2$ \( ( 1 - 109 T^{2} + p^{2} T^{4} )( 1 + 122 T^{2} + p^{2} T^{4} ) \)
71$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 15 T + 152 T^{2} + 15 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^3$ \( 1 - 155 T^{2} + 17784 T^{4} - 155 p^{2} T^{6} + p^{4} T^{8} \)
83$C_2^2$ \( ( 1 + 118 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 7 T - 40 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.53886626359238069758819959083, −5.98867641304559880921677687964, −5.98052437986808051965129298516, −5.97135009875434684985411415504, −5.89024236579650227554949090805, −5.39589148667742792058796890741, −5.19094015297682936207672878547, −5.11709915256627128873215644594, −4.93273931025385622770627041957, −4.72758042164038196313092923396, −4.25784684331809690121112509820, −4.17706867697275217776495393053, −3.61313289638765907186028980842, −3.60854335497047465632717484046, −3.58138971344786329739863231017, −3.08382444723340021941676418257, −2.95597875702242550220827768571, −2.80091824956010040611232995517, −2.27341304721973577030380357762, −1.95141787534657996090744182759, −1.72163364649437463951143090564, −1.57820317389206327820091561487, −1.27263606071932478773984107170, −0.852537544487195092694297287278, −0.13882210585428058306320824275, 0.13882210585428058306320824275, 0.852537544487195092694297287278, 1.27263606071932478773984107170, 1.57820317389206327820091561487, 1.72163364649437463951143090564, 1.95141787534657996090744182759, 2.27341304721973577030380357762, 2.80091824956010040611232995517, 2.95597875702242550220827768571, 3.08382444723340021941676418257, 3.58138971344786329739863231017, 3.60854335497047465632717484046, 3.61313289638765907186028980842, 4.17706867697275217776495393053, 4.25784684331809690121112509820, 4.72758042164038196313092923396, 4.93273931025385622770627041957, 5.11709915256627128873215644594, 5.19094015297682936207672878547, 5.39589148667742792058796890741, 5.89024236579650227554949090805, 5.97135009875434684985411415504, 5.98052437986808051965129298516, 5.98867641304559880921677687964, 6.53886626359238069758819959083

Graph of the $Z$-function along the critical line