Properties

Degree 2
Conductor $ 5 \cdot 13 \cdot 31 $
Sign $1$
Motivic weight 0
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 0.241·2-s + 0.709·3-s − 0.941·4-s + 5-s + 0.170·6-s + 1.77·7-s − 0.468·8-s − 0.497·9-s + 0.241·10-s − 1.13·11-s − 0.667·12-s − 13-s + 0.426·14-s + 0.709·15-s + 0.829·16-s + 1.94·17-s − 0.119·18-s − 0.941·20-s + 1.25·21-s − 0.273·22-s + 1.49·23-s − 0.332·24-s + 25-s − 0.241·26-s − 1.06·27-s − 1.66·28-s + 0.170·30-s + ⋯
L(s)  = 1  + 0.241·2-s + 0.709·3-s − 0.941·4-s + 5-s + 0.170·6-s + 1.77·7-s − 0.468·8-s − 0.497·9-s + 0.241·10-s − 1.13·11-s − 0.667·12-s − 13-s + 0.426·14-s + 0.709·15-s + 0.829·16-s + 1.94·17-s − 0.119·18-s − 0.941·20-s + 1.25·21-s − 0.273·22-s + 1.49·23-s − 0.332·24-s + 25-s − 0.241·26-s − 1.06·27-s − 1.66·28-s + 0.170·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2015 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2015 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(2015\)    =    \(5 \cdot 13 \cdot 31\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(0\)
character  :  $\chi_{2015} (2014, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 2015,\ (\ :0),\ 1)\)
\(L(\frac{1}{2})\)  \(\approx\)  \(1.714477308\)
\(L(\frac12)\)  \(\approx\)  \(1.714477308\)
\(L(1)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{5,\;13,\;31\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{5,\;13,\;31\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad5 \( 1 - T \)
13 \( 1 + T \)
31 \( 1 + T \)
good2 \( 1 - 0.241T + T^{2} \)
3 \( 1 - 0.709T + T^{2} \)
7 \( 1 - 1.77T + T^{2} \)
11 \( 1 + 1.13T + T^{2} \)
17 \( 1 - 1.94T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - 1.49T + T^{2} \)
29 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 + 0.241T + T^{2} \)
47 \( 1 + 1.49T + T^{2} \)
53 \( 1 + 1.13T + T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 1.13T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + 1.77T + T^{2} \)
97 \( 1 + 0.709T + T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−9.345820184685168468928134692734, −8.439442584270301628705003584723, −8.016504757606841357863568687558, −7.31393206007081334580384801897, −5.68399297768453450262517834071, −5.19236727407332585456642931927, −4.83317905439022467962790964152, −3.36335821906628261504053968807, −2.57045509104693024712292247872, −1.43062094492485354654680844975, 1.43062094492485354654680844975, 2.57045509104693024712292247872, 3.36335821906628261504053968807, 4.83317905439022467962790964152, 5.19236727407332585456642931927, 5.68399297768453450262517834071, 7.31393206007081334580384801897, 8.016504757606841357863568687558, 8.439442584270301628705003584723, 9.345820184685168468928134692734

Graph of the $Z$-function along the critical line