Properties

Degree $2$
Conductor $2015$
Sign $1$
Motivic weight $0$
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 1.77·2-s + 0.241·3-s + 2.13·4-s + 5-s + 0.426·6-s − 0.709·7-s + 2.01·8-s − 0.941·9-s + 1.77·10-s − 1.49·11-s + 0.514·12-s + 13-s − 1.25·14-s + 0.241·15-s + 1.42·16-s + 1.13·17-s − 1.66·18-s + 2.13·20-s − 0.170·21-s − 2.65·22-s − 1.94·23-s + 0.485·24-s + 25-s + 1.77·26-s − 0.468·27-s − 1.51·28-s + 0.426·30-s + ⋯
L(s)  = 1  + 1.77·2-s + 0.241·3-s + 2.13·4-s + 5-s + 0.426·6-s − 0.709·7-s + 2.01·8-s − 0.941·9-s + 1.77·10-s − 1.49·11-s + 0.514·12-s + 13-s − 1.25·14-s + 0.241·15-s + 1.42·16-s + 1.13·17-s − 1.66·18-s + 2.13·20-s − 0.170·21-s − 2.65·22-s − 1.94·23-s + 0.485·24-s + 25-s + 1.77·26-s − 0.468·27-s − 1.51·28-s + 0.426·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2015 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2015 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2015\)    =    \(5 \cdot 13 \cdot 31\)
Sign: $1$
Motivic weight: \(0\)
Character: $\chi_{2015} (2014, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2015,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(3.443829511\)
\(L(\frac12)\) \(\approx\) \(3.443829511\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
13 \( 1 - T \)
31 \( 1 - T \)
good2 \( 1 - 1.77T + T^{2} \)
3 \( 1 - 0.241T + T^{2} \)
7 \( 1 + 0.709T + T^{2} \)
11 \( 1 + 1.49T + T^{2} \)
17 \( 1 - 1.13T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 + 1.94T + T^{2} \)
29 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 - 1.77T + T^{2} \)
47 \( 1 + 1.94T + T^{2} \)
53 \( 1 + 1.49T + T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + 1.49T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + 0.709T + T^{2} \)
97 \( 1 - 0.241T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.553910796934658229439010208358, −8.331853722329919319195795773162, −7.67714064493939445329051346477, −6.37577170980708743920650432453, −5.97115563268794931281812975274, −5.49584272938350748614156779193, −4.54409887523622501690404521631, −3.31776820361824830169502380280, −2.91608484996336079661788366987, −1.94733314344904275299982961783, 1.94733314344904275299982961783, 2.91608484996336079661788366987, 3.31776820361824830169502380280, 4.54409887523622501690404521631, 5.49584272938350748614156779193, 5.97115563268794931281812975274, 6.37577170980708743920650432453, 7.67714064493939445329051346477, 8.331853722329919319195795773162, 9.553910796934658229439010208358

Graph of the $Z$-function along the critical line