Properties

Label 8-2015e4-1.1-c0e4-0-1
Degree $8$
Conductor $1.649\times 10^{13}$
Sign $1$
Analytic cond. $1.02265$
Root an. cond. $1.00280$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 4·5-s + 2·9-s + 16-s − 2·19-s + 8·20-s + 10·25-s − 4·31-s − 4·36-s + 2·41-s − 8·45-s − 2·49-s + 2·59-s + 2·64-s − 2·71-s + 4·76-s − 4·80-s + 81-s + 8·95-s − 20·100-s − 2·101-s + 4·109-s − 2·121-s + 8·124-s − 20·125-s + 127-s + 131-s + ⋯
L(s)  = 1  − 2·4-s − 4·5-s + 2·9-s + 16-s − 2·19-s + 8·20-s + 10·25-s − 4·31-s − 4·36-s + 2·41-s − 8·45-s − 2·49-s + 2·59-s + 2·64-s − 2·71-s + 4·76-s − 4·80-s + 81-s + 8·95-s − 20·100-s − 2·101-s + 4·109-s − 2·121-s + 8·124-s − 20·125-s + 127-s + 131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{4} \cdot 13^{4} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{4} \cdot 13^{4} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{4} \cdot 13^{4} \cdot 31^{4}\)
Sign: $1$
Analytic conductor: \(1.02265\)
Root analytic conductor: \(1.00280\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{4} \cdot 13^{4} \cdot 31^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.02104373539\)
\(L(\frac12)\) \(\approx\) \(0.02104373539\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_1$ \( ( 1 + T )^{4} \)
13$C_2^2$ \( 1 - T^{2} + T^{4} \)
31$C_1$ \( ( 1 + T )^{4} \)
good2$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
3$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
7$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
11$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
17$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
19$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
23$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
29$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
37$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
43$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
53$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
59$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
67$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
71$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
83$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.90462016108604592222881923589, −6.65536719358089949956861551685, −6.52276719572584919219797994821, −5.96584377366271131378868977925, −5.95422409772995167873100461901, −5.40221358783587108585128407428, −5.24593808881362731225251243419, −5.19125041171068482694003410426, −4.67103950865467401603428121480, −4.64562400595853249375696807432, −4.36435858605497184682018966515, −4.30714991163580986441291342295, −4.27295470097515021265917141660, −4.00234198780960797610982792804, −3.69114515041586001311617957503, −3.57966518409483424019074569902, −3.50894621568163748058224379140, −3.11049624973495091304319654380, −2.83158227449255033420691839775, −2.20580174082125034035189673830, −2.16995092867022748048347163322, −1.64572066895247679578381263913, −1.14651985467179431511887067888, −0.863139815421126946163196074024, −0.11276467011578664861026201337, 0.11276467011578664861026201337, 0.863139815421126946163196074024, 1.14651985467179431511887067888, 1.64572066895247679578381263913, 2.16995092867022748048347163322, 2.20580174082125034035189673830, 2.83158227449255033420691839775, 3.11049624973495091304319654380, 3.50894621568163748058224379140, 3.57966518409483424019074569902, 3.69114515041586001311617957503, 4.00234198780960797610982792804, 4.27295470097515021265917141660, 4.30714991163580986441291342295, 4.36435858605497184682018966515, 4.64562400595853249375696807432, 4.67103950865467401603428121480, 5.19125041171068482694003410426, 5.24593808881362731225251243419, 5.40221358783587108585128407428, 5.95422409772995167873100461901, 5.96584377366271131378868977925, 6.52276719572584919219797994821, 6.65536719358089949956861551685, 6.90462016108604592222881923589

Graph of the $Z$-function along the critical line