Properties

Label 8-201e4-1.1-c0e4-0-0
Degree $8$
Conductor $1632240801$
Sign $1$
Analytic cond. $0.000101254$
Root an. cond. $0.316720$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·7-s − 2·9-s − 2·13-s + 16-s + 2·19-s + 4·25-s + 2·28-s + 2·31-s + 2·36-s − 2·37-s + 3·49-s + 2·52-s − 2·61-s + 4·63-s − 2·64-s − 4·67-s + 2·73-s − 2·76-s − 2·79-s + 3·81-s + 4·91-s − 2·97-s − 4·100-s + 2·103-s − 2·112-s + 4·117-s + ⋯
L(s)  = 1  − 4-s − 2·7-s − 2·9-s − 2·13-s + 16-s + 2·19-s + 4·25-s + 2·28-s + 2·31-s + 2·36-s − 2·37-s + 3·49-s + 2·52-s − 2·61-s + 4·63-s − 2·64-s − 4·67-s + 2·73-s − 2·76-s − 2·79-s + 3·81-s + 4·91-s − 2·97-s − 4·100-s + 2·103-s − 2·112-s + 4·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 67^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 67^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 67^{4}\)
Sign: $1$
Analytic conductor: \(0.000101254\)
Root analytic conductor: \(0.316720\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 67^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.1450952368\)
\(L(\frac12)\) \(\approx\) \(0.1450952368\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_1$ \( ( 1 + T )^{4} \)
good2$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
5$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
7$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
11$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
13$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
17$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
23$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
29$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
31$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
41$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
43$C_2$ \( ( 1 + T^{2} )^{4} \)
47$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
71$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
73$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
83$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
89$C_2$ \( ( 1 + T^{2} )^{4} \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.216889091870554163749756343538, −9.105257492640903248615743272686, −9.028142894516585149340121942550, −8.656001310041740246012097114734, −8.419824572179928034669012973985, −8.244543117062685754216292349168, −7.63639696742692720184301075209, −7.50380806710069990355949851386, −7.18369849732048065400585758462, −7.00874152878573842366442728339, −6.56762273525719702520866453237, −6.44965633872900794959990974483, −5.86237701988828560970330625284, −5.86192943407996183961397074661, −5.35801835167399409429081676615, −5.16449676002361227003296168042, −4.86565227648055727757135798497, −4.43400830213849649691932529700, −4.43329433667706348483214198311, −3.33240206634039053429583645498, −3.25837212886460724700325050683, −3.06862958808679531741982289930, −2.86926749676441456327653966422, −2.45801410805512419283023089293, −1.15003496418143021220767078789, 1.15003496418143021220767078789, 2.45801410805512419283023089293, 2.86926749676441456327653966422, 3.06862958808679531741982289930, 3.25837212886460724700325050683, 3.33240206634039053429583645498, 4.43329433667706348483214198311, 4.43400830213849649691932529700, 4.86565227648055727757135798497, 5.16449676002361227003296168042, 5.35801835167399409429081676615, 5.86192943407996183961397074661, 5.86237701988828560970330625284, 6.44965633872900794959990974483, 6.56762273525719702520866453237, 7.00874152878573842366442728339, 7.18369849732048065400585758462, 7.50380806710069990355949851386, 7.63639696742692720184301075209, 8.244543117062685754216292349168, 8.419824572179928034669012973985, 8.656001310041740246012097114734, 9.028142894516585149340121942550, 9.105257492640903248615743272686, 9.216889091870554163749756343538

Graph of the $Z$-function along the critical line