Properties

Degree 2
Conductor 2003
Sign $1$
Motivic weight 0
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 1.87·3-s + 4-s + 2.53·9-s − 1.87·12-s + 0.347·13-s + 16-s − 19-s + 25-s − 2.87·27-s + 2.53·36-s − 0.652·39-s + 0.347·47-s − 1.87·48-s + 49-s + 0.347·52-s − 53-s + 1.87·57-s + 1.53·59-s + 64-s + 1.53·73-s − 1.87·75-s − 76-s + 1.53·79-s + 2.87·81-s − 89-s + 100-s + 0.347·101-s + ⋯
L(s)  = 1  − 1.87·3-s + 4-s + 2.53·9-s − 1.87·12-s + 0.347·13-s + 16-s − 19-s + 25-s − 2.87·27-s + 2.53·36-s − 0.652·39-s + 0.347·47-s − 1.87·48-s + 49-s + 0.347·52-s − 53-s + 1.87·57-s + 1.53·59-s + 64-s + 1.53·73-s − 1.87·75-s − 76-s + 1.53·79-s + 2.87·81-s − 89-s + 100-s + 0.347·101-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 2003 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 2003 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(2003\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(0\)
character  :  $\chi_{2003} (2002, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 2003,\ (\ :0),\ 1)$
$L(\frac{1}{2})$  $\approx$  $0.8359489183$
$L(\frac12)$  $\approx$  $0.8359489183$
$L(1)$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \neq 2003$, \(F_p\) is a polynomial of degree 2. If $p = 2003$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2003 \( 1+O(T) \)
good2 \( 1 - T^{2} \)
3 \( 1 + 1.87T + T^{2} \)
5 \( 1 - T^{2} \)
7 \( 1 - T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 - 0.347T + T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 + T + T^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - 0.347T + T^{2} \)
53 \( 1 + T + T^{2} \)
59 \( 1 - 1.53T + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - 1.53T + T^{2} \)
79 \( 1 - 1.53T + T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + T + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−9.674909252977817404995822253806, −8.459869010827793059582913584629, −7.41712167701710131552400132536, −6.74031035280392642966854844786, −6.24649343785626698549659674428, −5.52519585731075404240487209219, −4.71935729270348960319489264639, −3.69986029787874061932208308603, −2.21453177929666434446917857794, −1.03009713626109061612792543694, 1.03009713626109061612792543694, 2.21453177929666434446917857794, 3.69986029787874061932208308603, 4.71935729270348960319489264639, 5.52519585731075404240487209219, 6.24649343785626698549659674428, 6.74031035280392642966854844786, 7.41712167701710131552400132536, 8.459869010827793059582913584629, 9.674909252977817404995822253806

Graph of the $Z$-function along the critical line