Properties

Label 8-200e4-1.1-c1e4-0-0
Degree $8$
Conductor $1600000000$
Sign $1$
Analytic cond. $6.50471$
Root an. cond. $1.26372$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 4·3-s + 2·4-s − 8·6-s + 4·8-s + 4·9-s − 8·12-s + 8·16-s + 8·18-s − 16·24-s + 4·27-s − 8·31-s + 8·32-s + 8·36-s − 8·37-s − 8·41-s + 28·43-s − 32·48-s + 20·49-s − 32·53-s + 8·54-s − 16·62-s + 8·64-s + 36·67-s + 8·71-s + 16·72-s − 16·74-s + ⋯
L(s)  = 1  + 1.41·2-s − 2.30·3-s + 4-s − 3.26·6-s + 1.41·8-s + 4/3·9-s − 2.30·12-s + 2·16-s + 1.88·18-s − 3.26·24-s + 0.769·27-s − 1.43·31-s + 1.41·32-s + 4/3·36-s − 1.31·37-s − 1.24·41-s + 4.26·43-s − 4.61·48-s + 20/7·49-s − 4.39·53-s + 1.08·54-s − 2.03·62-s + 64-s + 4.39·67-s + 0.949·71-s + 1.88·72-s − 1.85·74-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(6.50471\)
Root analytic conductor: \(1.26372\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.164025938\)
\(L(\frac12)\) \(\approx\) \(1.164025938\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - p T + p T^{2} - p^{2} T^{3} + p^{2} T^{4} \)
5 \( 1 \)
good3$D_{4}$ \( ( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 - 20 T^{2} + 186 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 20 T^{2} + 54 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 36 T^{2} + 1274 T^{4} - 36 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
41$D_{4}$ \( ( 1 + 4 T + 74 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 - 14 T + 132 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 132 T^{2} + 8474 T^{4} - 132 p^{2} T^{6} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 + 16 T + 158 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 180 T^{2} + 14294 T^{4} - 180 p^{2} T^{6} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 140 T^{2} + 11574 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 - 18 T + 212 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 - 4 T + 134 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 236 T^{2} + 23814 T^{4} - 236 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 - 16 T + 174 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 + 6 T + 172 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 + 4 T + 134 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 140 T^{2} + 16806 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.402829178227994909923340988459, −8.810083775405742961499812971304, −8.498446094250028279735558197869, −8.229700196940593816371086644505, −8.083055732987274125402409044524, −7.41399486844540375373296924656, −7.40147535557778742778825504346, −7.10190879812325523363122786735, −6.96736261390371091038807245530, −6.22491983654313444674864798283, −6.16697233812793915684061513162, −6.00134133140784793940463533836, −5.84121737425258478600724503925, −5.33401878785986674608822658003, −5.03814829139291654720665934547, −5.00665771609641931399157047307, −4.90294016326911297116126944033, −4.17188162089093127446360540948, −3.80172237134294341915081086807, −3.73146730323659705067309818438, −3.31947073686882230909682864305, −2.42869210975387180015372082654, −2.34314027565998869961187992019, −1.50849049900254926252380088984, −0.64452322507292513297461392572, 0.64452322507292513297461392572, 1.50849049900254926252380088984, 2.34314027565998869961187992019, 2.42869210975387180015372082654, 3.31947073686882230909682864305, 3.73146730323659705067309818438, 3.80172237134294341915081086807, 4.17188162089093127446360540948, 4.90294016326911297116126944033, 5.00665771609641931399157047307, 5.03814829139291654720665934547, 5.33401878785986674608822658003, 5.84121737425258478600724503925, 6.00134133140784793940463533836, 6.16697233812793915684061513162, 6.22491983654313444674864798283, 6.96736261390371091038807245530, 7.10190879812325523363122786735, 7.40147535557778742778825504346, 7.41399486844540375373296924656, 8.083055732987274125402409044524, 8.229700196940593816371086644505, 8.498446094250028279735558197869, 8.810083775405742961499812971304, 9.402829178227994909923340988459

Graph of the $Z$-function along the critical line