Properties

Label 16-20e8-1.1-c8e8-0-0
Degree $16$
Conductor $25600000000$
Sign $1$
Analytic cond. $1.94189\times 10^{7}$
Root an. cond. $2.85439$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 70·3-s + 894·5-s − 2.03e3·7-s + 2.45e3·9-s − 420·11-s + 3.31e4·13-s − 6.25e4·15-s + 4.36e4·17-s + 1.42e5·21-s − 6.63e5·23-s + 4.81e5·25-s + 3.15e5·27-s − 3.17e6·31-s + 2.94e4·33-s − 1.81e6·35-s + 5.34e6·37-s − 2.32e6·39-s − 1.01e7·41-s − 1.03e7·43-s + 2.19e6·45-s + 1.92e7·47-s + 2.06e6·49-s − 3.05e6·51-s − 2.43e7·53-s − 3.75e5·55-s − 8.25e7·61-s − 4.97e6·63-s + ⋯
L(s)  = 1  − 0.864·3-s + 1.43·5-s − 0.845·7-s + 0.373·9-s − 0.0286·11-s + 1.16·13-s − 1.23·15-s + 0.522·17-s + 0.730·21-s − 2.37·23-s + 1.23·25-s + 0.592·27-s − 3.44·31-s + 0.0247·33-s − 1.20·35-s + 2.85·37-s − 1.00·39-s − 3.60·41-s − 3.02·43-s + 0.534·45-s + 3.94·47-s + 0.357·49-s − 0.451·51-s − 3.08·53-s − 0.0410·55-s − 5.95·61-s − 0.315·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(9-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+4)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{16} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1.94189\times 10^{7}\)
Root analytic conductor: \(2.85439\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{16} \cdot 5^{8} ,\ ( \ : [4]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.01853279274\)
\(L(\frac12)\) \(\approx\) \(0.01853279274\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 894 T + 63584 p T^{2} + 155646 p^{4} T^{3} - 2923338 p^{7} T^{4} + 155646 p^{12} T^{5} + 63584 p^{17} T^{6} - 894 p^{24} T^{7} + p^{32} T^{8} \)
good3 \( 1 + 70 T + 2450 T^{2} - 3890 p^{4} T^{3} - 2127488 p^{2} T^{4} - 129108590 p^{2} T^{5} + 1690394750 p^{2} T^{6} - 21854802310 p^{6} T^{7} - 13724994098 p^{10} T^{8} - 21854802310 p^{14} T^{9} + 1690394750 p^{18} T^{10} - 129108590 p^{26} T^{11} - 2127488 p^{34} T^{12} - 3890 p^{44} T^{13} + 2450 p^{48} T^{14} + 70 p^{56} T^{15} + p^{64} T^{16} \)
7 \( 1 + 290 p T + 42050 p^{2} T^{2} + 290506630 p^{2} T^{3} + 687872758304 p^{2} T^{4} - 13377173131190 p^{4} T^{5} - 118009162050 p^{10} T^{6} - 30732720771943710 p^{8} T^{7} - \)\(76\!\cdots\!06\)\( p^{6} T^{8} - 30732720771943710 p^{16} T^{9} - 118009162050 p^{26} T^{10} - 13377173131190 p^{28} T^{11} + 687872758304 p^{34} T^{12} + 290506630 p^{42} T^{13} + 42050 p^{50} T^{14} + 290 p^{57} T^{15} + p^{64} T^{16} \)
11 \( ( 1 + 210 T + 276969824 T^{2} - 4317403025970 T^{3} + 22655350934029566 T^{4} - 4317403025970 p^{8} T^{5} + 276969824 p^{16} T^{6} + 210 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
13 \( 1 - 33180 T + 550456200 T^{2} + 3382789736460 T^{3} + 185791033656199948 T^{4} + \)\(55\!\cdots\!40\)\( T^{5} - \)\(68\!\cdots\!00\)\( p^{2} T^{6} + \)\(19\!\cdots\!20\)\( p T^{7} - \)\(92\!\cdots\!62\)\( T^{8} + \)\(19\!\cdots\!20\)\( p^{9} T^{9} - \)\(68\!\cdots\!00\)\( p^{18} T^{10} + \)\(55\!\cdots\!40\)\( p^{24} T^{11} + 185791033656199948 p^{32} T^{12} + 3382789736460 p^{40} T^{13} + 550456200 p^{48} T^{14} - 33180 p^{56} T^{15} + p^{64} T^{16} \)
17 \( 1 - 43620 T + 951352200 T^{2} - 106908559974060 T^{3} - 27247709503236830452 T^{4} + \)\(73\!\cdots\!60\)\( T^{5} - \)\(40\!\cdots\!00\)\( T^{6} - \)\(35\!\cdots\!60\)\( T^{7} + \)\(44\!\cdots\!98\)\( T^{8} - \)\(35\!\cdots\!60\)\( p^{8} T^{9} - \)\(40\!\cdots\!00\)\( p^{16} T^{10} + \)\(73\!\cdots\!60\)\( p^{24} T^{11} - 27247709503236830452 p^{32} T^{12} - 106908559974060 p^{40} T^{13} + 951352200 p^{48} T^{14} - 43620 p^{56} T^{15} + p^{64} T^{16} \)
19 \( 1 - 1479904168 p T^{2} + \)\(48\!\cdots\!48\)\( T^{4} - \)\(44\!\cdots\!24\)\( T^{6} + \)\(67\!\cdots\!70\)\( T^{8} - \)\(44\!\cdots\!24\)\( p^{16} T^{10} + \)\(48\!\cdots\!48\)\( p^{32} T^{12} - 1479904168 p^{49} T^{14} + p^{64} T^{16} \)
23 \( 1 + 663270 T + 219963546450 T^{2} + 50684927414310030 T^{3} + \)\(11\!\cdots\!56\)\( T^{4} + \)\(25\!\cdots\!90\)\( T^{5} + \)\(41\!\cdots\!50\)\( T^{6} - \)\(25\!\cdots\!10\)\( p^{2} T^{7} - \)\(29\!\cdots\!14\)\( p^{4} T^{8} - \)\(25\!\cdots\!10\)\( p^{10} T^{9} + \)\(41\!\cdots\!50\)\( p^{16} T^{10} + \)\(25\!\cdots\!90\)\( p^{24} T^{11} + \)\(11\!\cdots\!56\)\( p^{32} T^{12} + 50684927414310030 p^{40} T^{13} + 219963546450 p^{48} T^{14} + 663270 p^{56} T^{15} + p^{64} T^{16} \)
29 \( 1 - 2743503231112 T^{2} + \)\(36\!\cdots\!88\)\( T^{4} - \)\(30\!\cdots\!64\)\( T^{6} + \)\(17\!\cdots\!70\)\( T^{8} - \)\(30\!\cdots\!64\)\( p^{16} T^{10} + \)\(36\!\cdots\!88\)\( p^{32} T^{12} - 2743503231112 p^{48} T^{14} + p^{64} T^{16} \)
31 \( ( 1 + 51266 p T + 3863416314520 T^{2} + 3956117308235249954 T^{3} + \)\(16\!\cdots\!34\)\( p T^{4} + 3956117308235249954 p^{8} T^{5} + 3863416314520 p^{16} T^{6} + 51266 p^{25} T^{7} + p^{32} T^{8} )^{2} \)
37 \( 1 - 5344080 T + 14279595523200 T^{2} - 29203723934142519120 T^{3} + \)\(43\!\cdots\!36\)\( T^{4} - \)\(47\!\cdots\!60\)\( T^{5} + \)\(62\!\cdots\!00\)\( T^{6} - \)\(94\!\cdots\!40\)\( T^{7} + \)\(15\!\cdots\!86\)\( T^{8} - \)\(94\!\cdots\!40\)\( p^{8} T^{9} + \)\(62\!\cdots\!00\)\( p^{16} T^{10} - \)\(47\!\cdots\!60\)\( p^{24} T^{11} + \)\(43\!\cdots\!36\)\( p^{32} T^{12} - 29203723934142519120 p^{40} T^{13} + 14279595523200 p^{48} T^{14} - 5344080 p^{56} T^{15} + p^{64} T^{16} \)
41 \( ( 1 + 5092626 T + 19188772875200 T^{2} + 33007106306449428174 T^{3} + \)\(95\!\cdots\!14\)\( T^{4} + 33007106306449428174 p^{8} T^{5} + 19188772875200 p^{16} T^{6} + 5092626 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
43 \( 1 + 10342710 T + 53485825072050 T^{2} + \)\(23\!\cdots\!10\)\( T^{3} + \)\(70\!\cdots\!04\)\( T^{4} + \)\(90\!\cdots\!30\)\( T^{5} - \)\(15\!\cdots\!50\)\( T^{6} - \)\(19\!\cdots\!70\)\( T^{7} - \)\(97\!\cdots\!94\)\( T^{8} - \)\(19\!\cdots\!70\)\( p^{8} T^{9} - \)\(15\!\cdots\!50\)\( p^{16} T^{10} + \)\(90\!\cdots\!30\)\( p^{24} T^{11} + \)\(70\!\cdots\!04\)\( p^{32} T^{12} + \)\(23\!\cdots\!10\)\( p^{40} T^{13} + 53485825072050 p^{48} T^{14} + 10342710 p^{56} T^{15} + p^{64} T^{16} \)
47 \( 1 - 19232250 T + 184939720031250 T^{2} - \)\(12\!\cdots\!50\)\( T^{3} + \)\(71\!\cdots\!48\)\( T^{4} - \)\(32\!\cdots\!50\)\( T^{5} + \)\(12\!\cdots\!50\)\( T^{6} - \)\(42\!\cdots\!50\)\( T^{7} + \)\(15\!\cdots\!58\)\( T^{8} - \)\(42\!\cdots\!50\)\( p^{8} T^{9} + \)\(12\!\cdots\!50\)\( p^{16} T^{10} - \)\(32\!\cdots\!50\)\( p^{24} T^{11} + \)\(71\!\cdots\!48\)\( p^{32} T^{12} - \)\(12\!\cdots\!50\)\( p^{40} T^{13} + 184939720031250 p^{48} T^{14} - 19232250 p^{56} T^{15} + p^{64} T^{16} \)
53 \( 1 + 458880 p T + 105285427200 p^{2} T^{2} + \)\(22\!\cdots\!60\)\( T^{3} + \)\(10\!\cdots\!16\)\( T^{4} + \)\(48\!\cdots\!80\)\( T^{5} + \)\(41\!\cdots\!00\)\( T^{6} + \)\(42\!\cdots\!20\)\( T^{7} + \)\(37\!\cdots\!46\)\( T^{8} + \)\(42\!\cdots\!20\)\( p^{8} T^{9} + \)\(41\!\cdots\!00\)\( p^{16} T^{10} + \)\(48\!\cdots\!80\)\( p^{24} T^{11} + \)\(10\!\cdots\!16\)\( p^{32} T^{12} + \)\(22\!\cdots\!60\)\( p^{40} T^{13} + 105285427200 p^{50} T^{14} + 458880 p^{57} T^{15} + p^{64} T^{16} \)
59 \( 1 - 736741399423864 T^{2} + \)\(26\!\cdots\!00\)\( T^{4} - \)\(60\!\cdots\!56\)\( T^{6} + \)\(10\!\cdots\!74\)\( T^{8} - \)\(60\!\cdots\!56\)\( p^{16} T^{10} + \)\(26\!\cdots\!00\)\( p^{32} T^{12} - 736741399423864 p^{48} T^{14} + p^{64} T^{16} \)
61 \( ( 1 + 41257842 T + 1301244818102848 T^{2} + \)\(26\!\cdots\!74\)\( T^{3} + \)\(42\!\cdots\!70\)\( T^{4} + \)\(26\!\cdots\!74\)\( p^{8} T^{5} + 1301244818102848 p^{16} T^{6} + 41257842 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
67 \( 1 - 100675930 T + 5067821440682450 T^{2} - \)\(17\!\cdots\!70\)\( T^{3} + \)\(51\!\cdots\!76\)\( T^{4} - \)\(13\!\cdots\!10\)\( T^{5} + \)\(30\!\cdots\!50\)\( T^{6} - \)\(65\!\cdots\!90\)\( T^{7} + \)\(13\!\cdots\!66\)\( T^{8} - \)\(65\!\cdots\!90\)\( p^{8} T^{9} + \)\(30\!\cdots\!50\)\( p^{16} T^{10} - \)\(13\!\cdots\!10\)\( p^{24} T^{11} + \)\(51\!\cdots\!76\)\( p^{32} T^{12} - \)\(17\!\cdots\!70\)\( p^{40} T^{13} + 5067821440682450 p^{48} T^{14} - 100675930 p^{56} T^{15} + p^{64} T^{16} \)
71 \( ( 1 + 49645038 T + 1836961055683448 T^{2} + \)\(55\!\cdots\!46\)\( T^{3} + \)\(17\!\cdots\!70\)\( T^{4} + \)\(55\!\cdots\!46\)\( p^{8} T^{5} + 1836961055683448 p^{16} T^{6} + 49645038 p^{24} T^{7} + p^{32} T^{8} )^{2} \)
73 \( 1 + 93528520 T + 4373792026695200 T^{2} + \)\(17\!\cdots\!60\)\( T^{3} + \)\(66\!\cdots\!68\)\( T^{4} + \)\(21\!\cdots\!40\)\( T^{5} + \)\(64\!\cdots\!00\)\( T^{6} + \)\(19\!\cdots\!60\)\( T^{7} + \)\(55\!\cdots\!98\)\( T^{8} + \)\(19\!\cdots\!60\)\( p^{8} T^{9} + \)\(64\!\cdots\!00\)\( p^{16} T^{10} + \)\(21\!\cdots\!40\)\( p^{24} T^{11} + \)\(66\!\cdots\!68\)\( p^{32} T^{12} + \)\(17\!\cdots\!60\)\( p^{40} T^{13} + 4373792026695200 p^{48} T^{14} + 93528520 p^{56} T^{15} + p^{64} T^{16} \)
79 \( 1 - 8443828027508744 T^{2} + \)\(33\!\cdots\!60\)\( T^{4} - \)\(81\!\cdots\!96\)\( T^{6} + \)\(14\!\cdots\!54\)\( T^{8} - \)\(81\!\cdots\!96\)\( p^{16} T^{10} + \)\(33\!\cdots\!60\)\( p^{32} T^{12} - 8443828027508744 p^{48} T^{14} + p^{64} T^{16} \)
83 \( 1 + 10450350 T + 54604907561250 T^{2} + \)\(49\!\cdots\!50\)\( T^{3} - \)\(33\!\cdots\!24\)\( T^{4} - \)\(13\!\cdots\!50\)\( T^{5} - \)\(45\!\cdots\!50\)\( T^{6} - \)\(13\!\cdots\!50\)\( T^{7} - \)\(36\!\cdots\!34\)\( T^{8} - \)\(13\!\cdots\!50\)\( p^{8} T^{9} - \)\(45\!\cdots\!50\)\( p^{16} T^{10} - \)\(13\!\cdots\!50\)\( p^{24} T^{11} - \)\(33\!\cdots\!24\)\( p^{32} T^{12} + \)\(49\!\cdots\!50\)\( p^{40} T^{13} + 54604907561250 p^{48} T^{14} + 10450350 p^{56} T^{15} + p^{64} T^{16} \)
89 \( 1 - 29031783018178312 T^{2} + \)\(37\!\cdots\!48\)\( T^{4} - \)\(28\!\cdots\!04\)\( T^{6} + \)\(13\!\cdots\!70\)\( T^{8} - \)\(28\!\cdots\!04\)\( p^{16} T^{10} + \)\(37\!\cdots\!48\)\( p^{32} T^{12} - 29031783018178312 p^{48} T^{14} + p^{64} T^{16} \)
97 \( 1 + 179570760 T + 16122828923488800 T^{2} + \)\(18\!\cdots\!40\)\( T^{3} + \)\(13\!\cdots\!16\)\( T^{4} - \)\(19\!\cdots\!80\)\( T^{5} - \)\(85\!\cdots\!00\)\( T^{6} - \)\(14\!\cdots\!20\)\( T^{7} - \)\(18\!\cdots\!54\)\( T^{8} - \)\(14\!\cdots\!20\)\( p^{8} T^{9} - \)\(85\!\cdots\!00\)\( p^{16} T^{10} - \)\(19\!\cdots\!80\)\( p^{24} T^{11} + \)\(13\!\cdots\!16\)\( p^{32} T^{12} + \)\(18\!\cdots\!40\)\( p^{40} T^{13} + 16122828923488800 p^{48} T^{14} + 179570760 p^{56} T^{15} + p^{64} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.12010417819623631121098485997, −6.77200290341409534084951023465, −6.33977016625311350513588413138, −6.23750678637450605036127611333, −6.23202946425692838993933299321, −6.04940699757793439287152211671, −5.82168753480275489952204016449, −5.42206231285029482342443156800, −5.38230094842907061035518594469, −5.06645271533106482217520107901, −4.72593194009678371211659790338, −4.44294057197661979432060333111, −4.15715734147188816438990658587, −3.79119871676131944700207681582, −3.59520153066142442388506976854, −3.18953739523807708609057166360, −3.08519779852104617380974202390, −2.58060495656363156910575741379, −2.31964632469469384098061149790, −1.75865394334544675892727432177, −1.49724429664611773817830664444, −1.40176512064521413425336520465, −1.22716749986544897453117398229, −0.24790021959691861086426109611, −0.03432330432509585533609658412, 0.03432330432509585533609658412, 0.24790021959691861086426109611, 1.22716749986544897453117398229, 1.40176512064521413425336520465, 1.49724429664611773817830664444, 1.75865394334544675892727432177, 2.31964632469469384098061149790, 2.58060495656363156910575741379, 3.08519779852104617380974202390, 3.18953739523807708609057166360, 3.59520153066142442388506976854, 3.79119871676131944700207681582, 4.15715734147188816438990658587, 4.44294057197661979432060333111, 4.72593194009678371211659790338, 5.06645271533106482217520107901, 5.38230094842907061035518594469, 5.42206231285029482342443156800, 5.82168753480275489952204016449, 6.04940699757793439287152211671, 6.23202946425692838993933299321, 6.23750678637450605036127611333, 6.33977016625311350513588413138, 6.77200290341409534084951023465, 7.12010417819623631121098485997

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.