Properties

Degree 2
Conductor $ 2^{2} \cdot 5 $
Sign $-0.582 - 0.812i$
Motivic weight 3
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.63 − 1.03i)2-s + (−5.55 + 5.55i)3-s + (5.87 + 5.43i)4-s + (−10.4 + 3.84i)5-s + (20.3 − 8.91i)6-s + (1.14 + 1.14i)7-s + (−9.86 − 20.3i)8-s − 34.8i·9-s + (31.6 + 0.706i)10-s + 27.0i·11-s + (−62.8 + 2.45i)12-s + (40.4 + 40.4i)13-s + (−1.83 − 4.18i)14-s + (37.0 − 79.7i)15-s + (5.00 + 63.8i)16-s + (−36.2 + 36.2i)17-s + ⋯
L(s)  = 1  + (−0.931 − 0.364i)2-s + (−1.06 + 1.06i)3-s + (0.734 + 0.678i)4-s + (−0.939 + 0.343i)5-s + (1.38 − 0.606i)6-s + (0.0616 + 0.0616i)7-s + (−0.436 − 0.899i)8-s − 1.28i·9-s + (0.999 + 0.0223i)10-s + 0.741i·11-s + (−1.51 + 0.0591i)12-s + (0.863 + 0.863i)13-s + (−0.0349 − 0.0798i)14-s + (0.637 − 1.37i)15-s + (0.0781 + 0.996i)16-s + (−0.517 + 0.517i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.582 - 0.812i)\, \overline{\Lambda}(4-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.582 - 0.812i)\, \overline{\Lambda}(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(20\)    =    \(2^{2} \cdot 5\)
\( \varepsilon \)  =  $-0.582 - 0.812i$
motivic weight  =  \(3\)
character  :  $\chi_{20} (3, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 20,\ (\ :3/2),\ -0.582 - 0.812i)$
$L(2)$  $\approx$  $0.164049 + 0.319364i$
$L(\frac12)$  $\approx$  $0.164049 + 0.319364i$
$L(\frac{5}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;5\}$, \(F_p\) is a polynomial of degree 2. If $p \in \{2,\;5\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 + (2.63 + 1.03i)T \)
5 \( 1 + (10.4 - 3.84i)T \)
good3 \( 1 + (5.55 - 5.55i)T - 27iT^{2} \)
7 \( 1 + (-1.14 - 1.14i)T + 343iT^{2} \)
11 \( 1 - 27.0iT - 1.33e3T^{2} \)
13 \( 1 + (-40.4 - 40.4i)T + 2.19e3iT^{2} \)
17 \( 1 + (36.2 - 36.2i)T - 4.91e3iT^{2} \)
19 \( 1 + 56.8T + 6.85e3T^{2} \)
23 \( 1 + (-54.9 + 54.9i)T - 1.21e4iT^{2} \)
29 \( 1 - 57.1iT - 2.43e4T^{2} \)
31 \( 1 - 190. iT - 2.97e4T^{2} \)
37 \( 1 + (50.4 - 50.4i)T - 5.06e4iT^{2} \)
41 \( 1 + 71.5T + 6.89e4T^{2} \)
43 \( 1 + (-66.9 + 66.9i)T - 7.95e4iT^{2} \)
47 \( 1 + (-343. - 343. i)T + 1.03e5iT^{2} \)
53 \( 1 + (-240. - 240. i)T + 1.48e5iT^{2} \)
59 \( 1 - 738.T + 2.05e5T^{2} \)
61 \( 1 + 187.T + 2.26e5T^{2} \)
67 \( 1 + (576. + 576. i)T + 3.00e5iT^{2} \)
71 \( 1 - 157. iT - 3.57e5T^{2} \)
73 \( 1 + (-180. - 180. i)T + 3.89e5iT^{2} \)
79 \( 1 - 55.6T + 4.93e5T^{2} \)
83 \( 1 + (858. - 858. i)T - 5.71e5iT^{2} \)
89 \( 1 + 158. iT - 7.04e5T^{2} \)
97 \( 1 + (1.11e3 - 1.11e3i)T - 9.12e5iT^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−18.17687645615785436054919506012, −16.98303678304147708678869158970, −16.02995745916686105068772628437, −15.15231506827804522051301872298, −12.30207317086056224538366832587, −11.18796831169505155822348266419, −10.43753228466772904877410609527, −8.770884583890854202863449242969, −6.74045873526998573045375295989, −4.15265650491696262188221241899, 0.61822113697246821664982706940, 5.80065954854311085639031138187, 7.26700314553084322443395864821, 8.525622281329031562241862057551, 10.90949228533530803316209282688, 11.70598815623819220203864742067, 13.19744468246127585404830681673, 15.36462035561976728671344274640, 16.47800671510062611458052932766, 17.48997318319960071637473934612

Graph of the $Z$-function along the critical line