Properties

Label 8-2e4-1.1-c73e4-0-0
Degree $8$
Conductor $16$
Sign $1$
Analytic cond. $2.07554\times 10^{7}$
Root an. cond. $8.21564$
Motivic weight $73$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.74e11·2-s + 3.05e17·3-s + 4.72e22·4-s − 7.84e24·5-s + 8.38e28·6-s + 3.63e30·7-s + 6.49e33·8-s − 2.74e34·9-s − 2.15e36·10-s + 5.27e37·11-s + 1.44e40·12-s + 1.35e39·13-s + 9.99e41·14-s − 2.39e42·15-s + 7.80e44·16-s + 9.54e44·17-s − 7.54e45·18-s + 9.54e46·19-s − 3.70e47·20-s + 1.10e48·21-s + 1.45e49·22-s − 6.74e49·23-s + 1.97e51·24-s − 3.56e50·25-s + 3.72e50·26-s − 2.06e52·27-s + 1.71e53·28-s + ⋯
L(s)  = 1  + 2.82·2-s + 1.17·3-s + 5·4-s − 0.241·5-s + 3.31·6-s + 0.518·7-s + 7.07·8-s − 0.406·9-s − 0.682·10-s + 0.514·11-s + 5.86·12-s + 0.0297·13-s + 1.46·14-s − 0.282·15-s + 35/4·16-s + 1.17·17-s − 1.14·18-s + 2.01·19-s − 1.20·20-s + 0.608·21-s + 1.45·22-s − 1.33·23-s + 8.29·24-s − 0.336·25-s + 0.0840·26-s − 1.17·27-s + 2.59·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(74-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+73/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(16\)    =    \(2^{4}\)
Sign: $1$
Analytic conductor: \(2.07554\times 10^{7}\)
Root analytic conductor: \(8.21564\)
Motivic weight: \(73\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 16,\ (\ :73/2, 73/2, 73/2, 73/2),\ 1)\)

Particular Values

\(L(37)\) \(\approx\) \(154.8346583\)
\(L(\frac12)\) \(\approx\) \(154.8346583\)
\(L(\frac{75}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p^{36} T )^{4} \)
good3$C_2 \wr S_4$ \( 1 - 101688775241081392 p T + \)\(61\!\cdots\!76\)\( p^{9} T^{2} - \)\(21\!\cdots\!40\)\( p^{19} T^{3} + \)\(18\!\cdots\!62\)\( p^{37} T^{4} - \)\(21\!\cdots\!40\)\( p^{92} T^{5} + \)\(61\!\cdots\!76\)\( p^{155} T^{6} - 101688775241081392 p^{220} T^{7} + p^{292} T^{8} \)
5$C_2 \wr S_4$ \( 1 + \)\(15\!\cdots\!92\)\( p T + \)\(13\!\cdots\!76\)\( p^{5} T^{2} - \)\(14\!\cdots\!12\)\( p^{13} T^{3} - \)\(49\!\cdots\!66\)\( p^{25} T^{4} - \)\(14\!\cdots\!12\)\( p^{86} T^{5} + \)\(13\!\cdots\!76\)\( p^{151} T^{6} + \)\(15\!\cdots\!92\)\( p^{220} T^{7} + p^{292} T^{8} \)
7$C_2 \wr S_4$ \( 1 - \)\(51\!\cdots\!16\)\( p T + \)\(47\!\cdots\!76\)\( p^{5} T^{2} + \)\(10\!\cdots\!80\)\( p^{11} T^{3} + \)\(28\!\cdots\!06\)\( p^{20} T^{4} + \)\(10\!\cdots\!80\)\( p^{84} T^{5} + \)\(47\!\cdots\!76\)\( p^{151} T^{6} - \)\(51\!\cdots\!16\)\( p^{220} T^{7} + p^{292} T^{8} \)
11$C_2 \wr S_4$ \( 1 - \)\(47\!\cdots\!68\)\( p T + \)\(15\!\cdots\!28\)\( p^{2} T^{2} + \)\(25\!\cdots\!44\)\( p^{7} T^{3} + \)\(40\!\cdots\!70\)\( p^{13} T^{4} + \)\(25\!\cdots\!44\)\( p^{80} T^{5} + \)\(15\!\cdots\!28\)\( p^{148} T^{6} - \)\(47\!\cdots\!68\)\( p^{220} T^{7} + p^{292} T^{8} \)
13$C_2 \wr S_4$ \( 1 - \)\(13\!\cdots\!76\)\( T + \)\(15\!\cdots\!56\)\( p T^{2} - \)\(66\!\cdots\!20\)\( p^{4} T^{3} + \)\(75\!\cdots\!02\)\( p^{9} T^{4} - \)\(66\!\cdots\!20\)\( p^{77} T^{5} + \)\(15\!\cdots\!56\)\( p^{147} T^{6} - \)\(13\!\cdots\!76\)\( p^{219} T^{7} + p^{292} T^{8} \)
17$C_2 \wr S_4$ \( 1 - \)\(95\!\cdots\!52\)\( T + \)\(14\!\cdots\!36\)\( p T^{2} - \)\(20\!\cdots\!60\)\( p^{4} T^{3} + \)\(34\!\cdots\!46\)\( p^{8} T^{4} - \)\(20\!\cdots\!60\)\( p^{77} T^{5} + \)\(14\!\cdots\!36\)\( p^{147} T^{6} - \)\(95\!\cdots\!52\)\( p^{219} T^{7} + p^{292} T^{8} \)
19$C_2 \wr S_4$ \( 1 - \)\(95\!\cdots\!00\)\( T + \)\(54\!\cdots\!44\)\( p T^{2} - \)\(81\!\cdots\!00\)\( p^{3} T^{3} + \)\(73\!\cdots\!06\)\( p^{6} T^{4} - \)\(81\!\cdots\!00\)\( p^{76} T^{5} + \)\(54\!\cdots\!44\)\( p^{147} T^{6} - \)\(95\!\cdots\!00\)\( p^{219} T^{7} + p^{292} T^{8} \)
23$C_2 \wr S_4$ \( 1 + \)\(29\!\cdots\!48\)\( p T + \)\(33\!\cdots\!64\)\( p^{3} T^{2} + \)\(17\!\cdots\!00\)\( p^{6} T^{3} + \)\(10\!\cdots\!62\)\( p^{9} T^{4} + \)\(17\!\cdots\!00\)\( p^{79} T^{5} + \)\(33\!\cdots\!64\)\( p^{149} T^{6} + \)\(29\!\cdots\!48\)\( p^{220} T^{7} + p^{292} T^{8} \)
29$C_2 \wr S_4$ \( 1 + \)\(14\!\cdots\!60\)\( p T + \)\(78\!\cdots\!64\)\( p T^{2} + \)\(27\!\cdots\!20\)\( p^{3} T^{3} + \)\(94\!\cdots\!74\)\( p^{5} T^{4} + \)\(27\!\cdots\!20\)\( p^{76} T^{5} + \)\(78\!\cdots\!64\)\( p^{147} T^{6} + \)\(14\!\cdots\!60\)\( p^{220} T^{7} + p^{292} T^{8} \)
31$C_2 \wr S_4$ \( 1 - \)\(37\!\cdots\!08\)\( T + \)\(57\!\cdots\!48\)\( p T^{2} - \)\(21\!\cdots\!76\)\( p^{3} T^{3} + \)\(54\!\cdots\!70\)\( p^{5} T^{4} - \)\(21\!\cdots\!76\)\( p^{76} T^{5} + \)\(57\!\cdots\!48\)\( p^{147} T^{6} - \)\(37\!\cdots\!08\)\( p^{219} T^{7} + p^{292} T^{8} \)
37$C_2 \wr S_4$ \( 1 - \)\(68\!\cdots\!52\)\( T + \)\(27\!\cdots\!52\)\( T^{2} - \)\(19\!\cdots\!60\)\( p T^{3} + \)\(10\!\cdots\!74\)\( p^{2} T^{4} - \)\(19\!\cdots\!60\)\( p^{74} T^{5} + \)\(27\!\cdots\!52\)\( p^{146} T^{6} - \)\(68\!\cdots\!52\)\( p^{219} T^{7} + p^{292} T^{8} \)
41$C_2 \wr S_4$ \( 1 - \)\(56\!\cdots\!48\)\( T + \)\(97\!\cdots\!48\)\( T^{2} - \)\(25\!\cdots\!96\)\( p T^{3} + \)\(34\!\cdots\!70\)\( p^{2} T^{4} - \)\(25\!\cdots\!96\)\( p^{74} T^{5} + \)\(97\!\cdots\!48\)\( p^{146} T^{6} - \)\(56\!\cdots\!48\)\( p^{219} T^{7} + p^{292} T^{8} \)
43$C_2 \wr S_4$ \( 1 + \)\(19\!\cdots\!04\)\( T + \)\(65\!\cdots\!28\)\( T^{2} + \)\(21\!\cdots\!40\)\( p T^{3} + \)\(90\!\cdots\!14\)\( p^{2} T^{4} + \)\(21\!\cdots\!40\)\( p^{74} T^{5} + \)\(65\!\cdots\!28\)\( p^{146} T^{6} + \)\(19\!\cdots\!04\)\( p^{219} T^{7} + p^{292} T^{8} \)
47$C_2 \wr S_4$ \( 1 + \)\(26\!\cdots\!88\)\( T + \)\(68\!\cdots\!96\)\( p T^{2} + \)\(76\!\cdots\!80\)\( p^{2} T^{3} + \)\(58\!\cdots\!02\)\( p^{3} T^{4} + \)\(76\!\cdots\!80\)\( p^{75} T^{5} + \)\(68\!\cdots\!96\)\( p^{147} T^{6} + \)\(26\!\cdots\!88\)\( p^{219} T^{7} + p^{292} T^{8} \)
53$C_2 \wr S_4$ \( 1 - \)\(45\!\cdots\!16\)\( T + \)\(22\!\cdots\!96\)\( p T^{2} - \)\(30\!\cdots\!40\)\( p^{2} T^{3} + \)\(47\!\cdots\!98\)\( p^{3} T^{4} - \)\(30\!\cdots\!40\)\( p^{75} T^{5} + \)\(22\!\cdots\!96\)\( p^{147} T^{6} - \)\(45\!\cdots\!16\)\( p^{219} T^{7} + p^{292} T^{8} \)
59$C_2 \wr S_4$ \( 1 + \)\(36\!\cdots\!80\)\( T + \)\(81\!\cdots\!24\)\( p T^{2} + \)\(37\!\cdots\!60\)\( p^{2} T^{3} + \)\(56\!\cdots\!74\)\( p^{3} T^{4} + \)\(37\!\cdots\!60\)\( p^{75} T^{5} + \)\(81\!\cdots\!24\)\( p^{147} T^{6} + \)\(36\!\cdots\!80\)\( p^{219} T^{7} + p^{292} T^{8} \)
61$C_2 \wr S_4$ \( 1 - \)\(35\!\cdots\!08\)\( T + \)\(21\!\cdots\!68\)\( p T^{2} - \)\(67\!\cdots\!56\)\( p^{2} T^{3} + \)\(20\!\cdots\!70\)\( p^{3} T^{4} - \)\(67\!\cdots\!56\)\( p^{75} T^{5} + \)\(21\!\cdots\!68\)\( p^{147} T^{6} - \)\(35\!\cdots\!08\)\( p^{219} T^{7} + p^{292} T^{8} \)
67$C_2 \wr S_4$ \( 1 - \)\(24\!\cdots\!72\)\( T + \)\(50\!\cdots\!76\)\( p T^{2} + \)\(49\!\cdots\!20\)\( p^{2} T^{3} + \)\(17\!\cdots\!42\)\( p^{3} T^{4} + \)\(49\!\cdots\!20\)\( p^{75} T^{5} + \)\(50\!\cdots\!76\)\( p^{147} T^{6} - \)\(24\!\cdots\!72\)\( p^{219} T^{7} + p^{292} T^{8} \)
71$C_2 \wr S_4$ \( 1 - \)\(86\!\cdots\!68\)\( p T + \)\(10\!\cdots\!68\)\( p^{2} T^{2} - \)\(57\!\cdots\!36\)\( p^{3} T^{3} + \)\(41\!\cdots\!70\)\( p^{4} T^{4} - \)\(57\!\cdots\!36\)\( p^{76} T^{5} + \)\(10\!\cdots\!68\)\( p^{148} T^{6} - \)\(86\!\cdots\!68\)\( p^{220} T^{7} + p^{292} T^{8} \)
73$C_2 \wr S_4$ \( 1 - \)\(45\!\cdots\!36\)\( T + \)\(11\!\cdots\!68\)\( T^{2} - \)\(18\!\cdots\!80\)\( T^{3} + \)\(22\!\cdots\!46\)\( T^{4} - \)\(18\!\cdots\!80\)\( p^{73} T^{5} + \)\(11\!\cdots\!68\)\( p^{146} T^{6} - \)\(45\!\cdots\!36\)\( p^{219} T^{7} + p^{292} T^{8} \)
79$C_2 \wr S_4$ \( 1 - \)\(20\!\cdots\!40\)\( T + \)\(10\!\cdots\!56\)\( T^{2} - \)\(16\!\cdots\!80\)\( T^{3} + \)\(45\!\cdots\!26\)\( T^{4} - \)\(16\!\cdots\!80\)\( p^{73} T^{5} + \)\(10\!\cdots\!56\)\( p^{146} T^{6} - \)\(20\!\cdots\!40\)\( p^{219} T^{7} + p^{292} T^{8} \)
83$C_2 \wr S_4$ \( 1 - \)\(15\!\cdots\!16\)\( T + \)\(44\!\cdots\!48\)\( T^{2} - \)\(49\!\cdots\!80\)\( T^{3} + \)\(77\!\cdots\!66\)\( T^{4} - \)\(49\!\cdots\!80\)\( p^{73} T^{5} + \)\(44\!\cdots\!48\)\( p^{146} T^{6} - \)\(15\!\cdots\!16\)\( p^{219} T^{7} + p^{292} T^{8} \)
89$C_2 \wr S_4$ \( 1 + \)\(24\!\cdots\!40\)\( T + \)\(87\!\cdots\!76\)\( T^{2} + \)\(14\!\cdots\!80\)\( T^{3} + \)\(27\!\cdots\!66\)\( T^{4} + \)\(14\!\cdots\!80\)\( p^{73} T^{5} + \)\(87\!\cdots\!76\)\( p^{146} T^{6} + \)\(24\!\cdots\!40\)\( p^{219} T^{7} + p^{292} T^{8} \)
97$C_2 \wr S_4$ \( 1 - \)\(58\!\cdots\!32\)\( T + \)\(30\!\cdots\!92\)\( T^{2} - \)\(13\!\cdots\!40\)\( T^{3} + \)\(51\!\cdots\!06\)\( T^{4} - \)\(13\!\cdots\!40\)\( p^{73} T^{5} + \)\(30\!\cdots\!92\)\( p^{146} T^{6} - \)\(58\!\cdots\!32\)\( p^{219} T^{7} + p^{292} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.321311394281575963670467388630, −8.306470530738937799334742129410, −7.993414950234730230019865689631, −7.889789903966694908870594716120, −7.73392643681083059820687689304, −7.24522213843305328290322266895, −6.35118098446255115275391162346, −6.31790279441654167364394774446, −6.30504111619821142827363168521, −5.41818531829205162311391076821, −5.28773759088744606405104235771, −5.15272120591769526639307173657, −4.54681436659644297667605696538, −4.25904782534659131125336323960, −3.63664937890014308213176451388, −3.63306938722294399388880299348, −3.44695335417012824069249004137, −2.81901243447341161578037480170, −2.81366920948306755492264777812, −2.20392793858434154606317959186, −2.02070197058076735062048504161, −1.71203247275573186349192304432, −1.08893243391484536301450751520, −0.67420901992411540894440151660, −0.65931688450511965720780678326, 0.65931688450511965720780678326, 0.67420901992411540894440151660, 1.08893243391484536301450751520, 1.71203247275573186349192304432, 2.02070197058076735062048504161, 2.20392793858434154606317959186, 2.81366920948306755492264777812, 2.81901243447341161578037480170, 3.44695335417012824069249004137, 3.63306938722294399388880299348, 3.63664937890014308213176451388, 4.25904782534659131125336323960, 4.54681436659644297667605696538, 5.15272120591769526639307173657, 5.28773759088744606405104235771, 5.41818531829205162311391076821, 6.30504111619821142827363168521, 6.31790279441654167364394774446, 6.35118098446255115275391162346, 7.24522213843305328290322266895, 7.73392643681083059820687689304, 7.889789903966694908870594716120, 7.993414950234730230019865689631, 8.306470530738937799334742129410, 9.321311394281575963670467388630

Graph of the $Z$-function along the critical line