Properties

Label 6-2e3-1.1-c71e3-0-0
Degree $6$
Conductor $8$
Sign $1$
Analytic cond. $260295.$
Root an. cond. $7.99057$
Motivic weight $71$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.03e11·2-s + 2.36e15·3-s + 7.08e21·4-s + 4.75e24·5-s − 2.43e26·6-s − 6.85e29·7-s − 4.05e32·8-s − 1.35e34·9-s − 4.89e35·10-s + 3.96e36·11-s + 1.67e37·12-s + 2.52e39·13-s + 7.06e40·14-s + 1.12e40·15-s + 2.09e43·16-s + 3.54e43·17-s + 1.39e45·18-s + 2.84e45·19-s + 3.36e46·20-s − 1.62e45·21-s − 4.09e47·22-s + 3.72e47·23-s − 9.58e47·24-s − 1.72e49·25-s − 2.60e50·26-s − 3.53e50·27-s − 4.85e51·28-s + ⋯
L(s)  = 1  − 2.12·2-s + 0.0272·3-s + 3·4-s + 0.730·5-s − 0.0578·6-s − 0.684·7-s − 3.53·8-s − 1.79·9-s − 1.54·10-s + 0.425·11-s + 0.0817·12-s + 0.721·13-s + 1.45·14-s + 0.0199·15-s + 15/4·16-s + 0.739·17-s + 3.81·18-s + 1.14·19-s + 2.19·20-s − 0.0186·21-s − 0.903·22-s + 0.169·23-s − 0.0963·24-s − 0.408·25-s − 1.52·26-s − 0.543·27-s − 2.05·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8 ^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(72-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8 ^{s/2} \, \Gamma_{\C}(s+71/2)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(8\)    =    \(2^{3}\)
Sign: $1$
Analytic conductor: \(260295.\)
Root analytic conductor: \(7.99057\)
Motivic weight: \(71\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 8,\ (\ :71/2, 71/2, 71/2),\ 1)\)

Particular Values

\(L(36)\) \(\approx\) \(1.693673841\)
\(L(\frac12)\) \(\approx\) \(1.693673841\)
\(L(\frac{73}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p^{35} T )^{3} \)
good3$S_4\times C_2$ \( 1 - 262507810300804 p^{2} T + \)\(22\!\cdots\!77\)\( p^{10} T^{2} + \)\(34\!\cdots\!16\)\( p^{25} T^{3} + \)\(22\!\cdots\!77\)\( p^{81} T^{4} - 262507810300804 p^{144} T^{5} + p^{213} T^{6} \)
5$S_4\times C_2$ \( 1 - \)\(19\!\cdots\!66\)\( p^{2} T + \)\(51\!\cdots\!51\)\( p^{7} T^{2} - \)\(12\!\cdots\!84\)\( p^{15} T^{3} + \)\(51\!\cdots\!51\)\( p^{78} T^{4} - \)\(19\!\cdots\!66\)\( p^{144} T^{5} + p^{213} T^{6} \)
7$S_4\times C_2$ \( 1 + \)\(13\!\cdots\!28\)\( p^{2} T + \)\(39\!\cdots\!57\)\( p^{8} T^{2} + \)\(40\!\cdots\!16\)\( p^{16} T^{3} + \)\(39\!\cdots\!57\)\( p^{79} T^{4} + \)\(13\!\cdots\!28\)\( p^{144} T^{5} + p^{213} T^{6} \)
11$S_4\times C_2$ \( 1 - \)\(36\!\cdots\!96\)\( p T + \)\(62\!\cdots\!95\)\( p^{3} T^{2} - \)\(33\!\cdots\!40\)\( p^{8} T^{3} + \)\(62\!\cdots\!95\)\( p^{74} T^{4} - \)\(36\!\cdots\!96\)\( p^{143} T^{5} + p^{213} T^{6} \)
13$S_4\times C_2$ \( 1 - \)\(19\!\cdots\!42\)\( p T + \)\(47\!\cdots\!03\)\( p^{4} T^{2} - \)\(41\!\cdots\!64\)\( p^{9} T^{3} + \)\(47\!\cdots\!03\)\( p^{75} T^{4} - \)\(19\!\cdots\!42\)\( p^{143} T^{5} + p^{213} T^{6} \)
17$S_4\times C_2$ \( 1 - \)\(35\!\cdots\!18\)\( T + \)\(10\!\cdots\!63\)\( p^{2} T^{2} - \)\(54\!\cdots\!72\)\( p^{5} T^{3} + \)\(10\!\cdots\!63\)\( p^{73} T^{4} - \)\(35\!\cdots\!18\)\( p^{142} T^{5} + p^{213} T^{6} \)
19$S_4\times C_2$ \( 1 - \)\(28\!\cdots\!20\)\( T + \)\(52\!\cdots\!37\)\( p^{2} T^{2} - \)\(14\!\cdots\!40\)\( p^{5} T^{3} + \)\(52\!\cdots\!37\)\( p^{73} T^{4} - \)\(28\!\cdots\!20\)\( p^{142} T^{5} + p^{213} T^{6} \)
23$S_4\times C_2$ \( 1 - \)\(16\!\cdots\!92\)\( p T + \)\(23\!\cdots\!13\)\( p^{4} T^{2} + \)\(61\!\cdots\!16\)\( p^{5} T^{3} + \)\(23\!\cdots\!13\)\( p^{75} T^{4} - \)\(16\!\cdots\!92\)\( p^{143} T^{5} + p^{213} T^{6} \)
29$S_4\times C_2$ \( 1 - \)\(28\!\cdots\!70\)\( T + \)\(10\!\cdots\!07\)\( p^{2} T^{2} + \)\(63\!\cdots\!60\)\( p^{3} T^{3} + \)\(10\!\cdots\!07\)\( p^{73} T^{4} - \)\(28\!\cdots\!70\)\( p^{142} T^{5} + p^{213} T^{6} \)
31$S_4\times C_2$ \( 1 + \)\(19\!\cdots\!44\)\( p T + \)\(77\!\cdots\!75\)\( p^{3} T^{2} + \)\(31\!\cdots\!40\)\( p^{5} T^{3} + \)\(77\!\cdots\!75\)\( p^{74} T^{4} + \)\(19\!\cdots\!44\)\( p^{143} T^{5} + p^{213} T^{6} \)
37$S_4\times C_2$ \( 1 + \)\(68\!\cdots\!62\)\( T + \)\(20\!\cdots\!51\)\( p T^{2} + \)\(22\!\cdots\!04\)\( p^{2} T^{3} + \)\(20\!\cdots\!51\)\( p^{72} T^{4} + \)\(68\!\cdots\!62\)\( p^{142} T^{5} + p^{213} T^{6} \)
41$S_4\times C_2$ \( 1 - \)\(25\!\cdots\!86\)\( T + \)\(93\!\cdots\!55\)\( T^{2} - \)\(37\!\cdots\!80\)\( p T^{3} + \)\(93\!\cdots\!55\)\( p^{71} T^{4} - \)\(25\!\cdots\!86\)\( p^{142} T^{5} + p^{213} T^{6} \)
43$S_4\times C_2$ \( 1 - \)\(18\!\cdots\!36\)\( T + \)\(90\!\cdots\!71\)\( p T^{2} - \)\(20\!\cdots\!68\)\( p^{2} T^{3} + \)\(90\!\cdots\!71\)\( p^{72} T^{4} - \)\(18\!\cdots\!36\)\( p^{142} T^{5} + p^{213} T^{6} \)
47$S_4\times C_2$ \( 1 + \)\(43\!\cdots\!32\)\( T + \)\(12\!\cdots\!11\)\( p T^{2} + \)\(45\!\cdots\!64\)\( p^{2} T^{3} + \)\(12\!\cdots\!11\)\( p^{72} T^{4} + \)\(43\!\cdots\!32\)\( p^{142} T^{5} + p^{213} T^{6} \)
53$S_4\times C_2$ \( 1 - \)\(30\!\cdots\!06\)\( T + \)\(14\!\cdots\!51\)\( p T^{2} - \)\(53\!\cdots\!08\)\( p^{2} T^{3} + \)\(14\!\cdots\!51\)\( p^{72} T^{4} - \)\(30\!\cdots\!06\)\( p^{142} T^{5} + p^{213} T^{6} \)
59$S_4\times C_2$ \( 1 - \)\(46\!\cdots\!40\)\( T + \)\(18\!\cdots\!03\)\( p T^{2} - \)\(37\!\cdots\!20\)\( p^{2} T^{3} + \)\(18\!\cdots\!03\)\( p^{72} T^{4} - \)\(46\!\cdots\!40\)\( p^{142} T^{5} + p^{213} T^{6} \)
61$S_4\times C_2$ \( 1 - \)\(27\!\cdots\!06\)\( p T + \)\(12\!\cdots\!35\)\( p^{2} T^{2} - \)\(58\!\cdots\!00\)\( p^{3} T^{3} + \)\(12\!\cdots\!35\)\( p^{73} T^{4} - \)\(27\!\cdots\!06\)\( p^{143} T^{5} + p^{213} T^{6} \)
67$S_4\times C_2$ \( 1 - \)\(43\!\cdots\!24\)\( p T + \)\(92\!\cdots\!33\)\( p^{2} T^{2} - \)\(11\!\cdots\!68\)\( p^{3} T^{3} + \)\(92\!\cdots\!33\)\( p^{73} T^{4} - \)\(43\!\cdots\!24\)\( p^{143} T^{5} + p^{213} T^{6} \)
71$S_4\times C_2$ \( 1 - \)\(91\!\cdots\!96\)\( T + \)\(80\!\cdots\!85\)\( T^{2} - \)\(38\!\cdots\!00\)\( T^{3} + \)\(80\!\cdots\!85\)\( p^{71} T^{4} - \)\(91\!\cdots\!96\)\( p^{142} T^{5} + p^{213} T^{6} \)
73$S_4\times C_2$ \( 1 - \)\(28\!\cdots\!86\)\( T + \)\(59\!\cdots\!63\)\( T^{2} - \)\(84\!\cdots\!72\)\( T^{3} + \)\(59\!\cdots\!63\)\( p^{71} T^{4} - \)\(28\!\cdots\!86\)\( p^{142} T^{5} + p^{213} T^{6} \)
79$S_4\times C_2$ \( 1 - \)\(35\!\cdots\!40\)\( T + \)\(17\!\cdots\!37\)\( T^{2} - \)\(34\!\cdots\!20\)\( T^{3} + \)\(17\!\cdots\!37\)\( p^{71} T^{4} - \)\(35\!\cdots\!40\)\( p^{142} T^{5} + p^{213} T^{6} \)
83$S_4\times C_2$ \( 1 + \)\(49\!\cdots\!64\)\( T + \)\(13\!\cdots\!33\)\( T^{2} + \)\(21\!\cdots\!48\)\( T^{3} + \)\(13\!\cdots\!33\)\( p^{71} T^{4} + \)\(49\!\cdots\!64\)\( p^{142} T^{5} + p^{213} T^{6} \)
89$S_4\times C_2$ \( 1 + \)\(17\!\cdots\!70\)\( T + \)\(72\!\cdots\!67\)\( T^{2} + \)\(90\!\cdots\!60\)\( T^{3} + \)\(72\!\cdots\!67\)\( p^{71} T^{4} + \)\(17\!\cdots\!70\)\( p^{142} T^{5} + p^{213} T^{6} \)
97$S_4\times C_2$ \( 1 - \)\(41\!\cdots\!58\)\( T + \)\(31\!\cdots\!47\)\( T^{2} - \)\(74\!\cdots\!04\)\( T^{3} + \)\(31\!\cdots\!47\)\( p^{71} T^{4} - \)\(41\!\cdots\!58\)\( p^{142} T^{5} + p^{213} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.02150775375769971640294475246, −11.35044125004675883212595408967, −11.14109875602125567823340233419, −10.73768234587935097249065419450, −9.922385362819168541040472256629, −9.602407719289499622842537816045, −9.390456928277208564879103718363, −8.861465666356790097821213590195, −8.309308116085308896947760536579, −8.076428026555780078305276314092, −7.46402528121473953105970301410, −6.70007701866108697943991357577, −6.63912488618128702132546548529, −5.75985300194031720340061788654, −5.62805751643630772634374995411, −5.29138069349547725323626923255, −3.91079472184107988548123664514, −3.41922911598692545131697169932, −3.17556865280986370615013316643, −2.35575346106003753127284087981, −2.27551970500632059377150467691, −1.66064879833718373124201852285, −0.932287180389301422681322737017, −0.70844749435404216599064018316, −0.41980751051285742381739687448, 0.41980751051285742381739687448, 0.70844749435404216599064018316, 0.932287180389301422681322737017, 1.66064879833718373124201852285, 2.27551970500632059377150467691, 2.35575346106003753127284087981, 3.17556865280986370615013316643, 3.41922911598692545131697169932, 3.91079472184107988548123664514, 5.29138069349547725323626923255, 5.62805751643630772634374995411, 5.75985300194031720340061788654, 6.63912488618128702132546548529, 6.70007701866108697943991357577, 7.46402528121473953105970301410, 8.076428026555780078305276314092, 8.309308116085308896947760536579, 8.861465666356790097821213590195, 9.390456928277208564879103718363, 9.602407719289499622842537816045, 9.922385362819168541040472256629, 10.73768234587935097249065419450, 11.14109875602125567823340233419, 11.35044125004675883212595408967, 12.02150775375769971640294475246

Graph of the $Z$-function along the critical line